Protons: 7
electrons: 7
neutrons: 7
Answer:
Myocarditis = C) Inflammation of the muscular wall of the heart.
Explanation:
Myocarditis is a condition usually caused by a virus.
It causes inflammation within the heart, generally along the muscular wall and within the middle layers.
It's definitely not a great condition. It's possible it could weaken his heart's ability to pump properly, which in turn could effect organs and cause organ failure. It'd lead to intense bouts of pain constantly, swelling, problems breathing, or even heart failure.
Feel bad for Franco.
Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).
N2O is compound becoz it has more than one type of atoms.
<span>Air is homogeneous mixture becoz it has different gases which are does not bonded to each other</span>
<u>Answer:</u> The concentration of
required will be 0.285 M.
<u>Explanation:</u>
To calculate the molarity of
, we use the equation:

Moles of
= 0.016 moles
Volume of solution = 1 L
Putting values in above equation, we get:

For the given chemical equations:

![Ni^{2+}(aq.)+6NH_3(aq.)\rightleftharpoons [Ni(NH_3)_6]^{2+}+C_2O_4^{2-}(aq.);K_f=1.2\times 10^9](https://tex.z-dn.net/?f=Ni%5E%7B2%2B%7D%28aq.%29%2B6NH_3%28aq.%29%5Crightleftharpoons%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%2BC_2O_4%5E%7B2-%7D%28aq.%29%3BK_f%3D1.2%5Ctimes%2010%5E9)
Net equation: ![NiC_2O_4(s)+6NH_3(aq.)\rightleftharpoons [Ni(NH_3)_6]^{2+}+C_2O_4^{2-}(aq.);K=?](https://tex.z-dn.net/?f=NiC_2O_4%28s%29%2B6NH_3%28aq.%29%5Crightleftharpoons%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%2BC_2O_4%5E%7B2-%7D%28aq.%29%3BK%3D%3F)
To calculate the equilibrium constant, K for above equation, we get:

The expression for equilibrium constant of above equation is:
![K=\frac{[C_2O_4^{2-}][[Ni(NH_3)_6]^{2+}]}{[NiC_2O_4][NH_3]^6}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BC_2O_4%5E%7B2-%7D%5D%5B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%5D%7D%7B%5BNiC_2O_4%5D%5BNH_3%5D%5E6%7D)
As,
is a solid, so its activity is taken as 1 and so for 
We are given:
![[[Ni(NH_3)_6]^{2+}]=0.016M](https://tex.z-dn.net/?f=%5B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%5D%3D0.016M)
Putting values in above equations, we get:
![0.48=\frac{0.016}{[NH_3]^6}}](https://tex.z-dn.net/?f=0.48%3D%5Cfrac%7B0.016%7D%7B%5BNH_3%5D%5E6%7D%7D)
![[NH_3]=0.285M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.285M)
Hence, the concentration of
required will be 0.285 M.