Answer:
mass of HCl = 243.5426 grams
Explanation:
1- we will get the mass of the reacting gold:
volume of gold = length * width * height
volume of gold = 3.2 * 3.8 * 2.8 = 34.048 cm^3 = 34.048 ml<span>
density = mass / volume
Therefore:
mass = density * volume
mass of gold = </span>19.3 * 34.048 = 657.1264 grams
2- we will get the number of moles of the reacting gold:
number of moles = mass / molar mass
number of moles = 657.1264 / 196.96657
number of moles = 3.3362 moles
3- we will get the number of moles of the HCl:
First, we will balanced the given equation. The balanced equation will be as follows:
Au + 2HCl ......> AuCl2 + H2
This means that one mole of Au reacts with 2 moles of HCl.
Therefore 3.3362 moles will react with 2*3.3362 = 6.6724 moles of HCL
4- we will get the mass of the HCl:
From the periodic table:
molar mass of H = 1 gram
molar mass of Cl = 35.5 grams
Therefore:
molar mass of HCl = 1 + 35.5 = 36.5 grams/mole
number of moles = mass / molar mass
Therefore:
mass = number of moles * molar mass
mass of HCl = 6.6724 * 36.5
mass of HCl = 243.5426 grams
Hope this helps :)
Molarity is defined as the number of moles of solute in 1 L of solution
molarity of stock solution to be prepared - 100 x 10⁻³ mol/L
volume of stock solution to be prepared - 1.2 mL
Therefore number of moles in 1.2 mL - 100 x 10⁻³ mol/L x 1.2 x 10⁻³ L
number of moles of drug - 1.2 x 10⁻⁴ mol
mass of drug required - 1.2 x 10⁻⁴ mol x 181.6 g/mol = 21. 8 mg
21.8 g of drug is required to make the stock solution
Answer:
In the explanation
Explanation:
Divergent: When two plates are diverging from each other, meaning that the two plates are moving away from each other. Events that may occur include ridges or rifts.
Convergent: When two plates are moving towards each other.
If a continental plate and an oceanic plate are converging, the oceanic plate would slide underneath the continental plate since it is thinner. This would result in subduction, which means that part of the oceanic plate would hang underneath the continental plate, where magma can melt the hanging part.
If two continental plates are converging, the crash would result in mountains or volcanic activity. Magma could rise and rush from the crack. There would be a bump in these tectonic plates.
Transform: When two plates are sliding past each other. Earthquakes can occur when the plates are sliding. When an oceanic plate is involved, the movement of the plates could cause a tsunami as well. The water above the transform fault could rise, and grow bigger and bigger. The 2011 Japan Tsunami is a good example of this.
Hope this helps!
Explanation:
It is known that
value of acetic acid is 4.74. And, relation between pH and
is as follows.
pH = pK_{a} + log ![\frac{[CH_{3}COOH]}{[CH_{3}COONa]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOOH%5D%7D%7B%5BCH_%7B3%7DCOONa%5D%7D)
= 4.74 + log 
So, number of moles of NaOH = Volume × Molarity
= 71.0 ml × 0.760 M
= 0.05396 mol
Also, moles of
= moles of 
= Molarity × Volume
= 1.00 M × 1.00 L
= 1.00 mol
Hence, addition of sodium acetate in NaOH will lead to the formation of acetic acid as follows.

Initial : 1.00 mol 1.00 mol
NaoH addition: 0.05396 mol
Equilibrium : (1 - 0.05396 mol) 0 (1.00 + 0.05396 mol)
= 0.94604 mol = 1.05396 mol
As, pH = pK_{a} + log ![\frac{[CH_{3}COONa]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOONa%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
= 4.74 + log 
= 4.69
Therefore, change in pH will be calculated as follows.
pH = 4.74 - 4.69
= 0.05
Thus, we can conclude that change in pH of the given solution is 0.05.
<span>Galvanized steel is preferred for outdoor uses because it is ideal to prevent rotting/corrosion
A steel will rot more quickly if it's exposed to a larger amount of oxygen and H2O , which will exist if we put it oudoor
Coating the steel with additional zinc will slow down the process</span>