Answer: hello your question is incomplete attached below is the complete question
answer : 1/2 KD^2 ( option A )
Explanation:
P.E ( potential energy ) = mgd
In case 1 P.E = 0 i.e. mgd = 0
Given that in case 2 the Mass M had moved through the Distance D by the compression of the spring
<u>The potential energy of the M in case 2 </u>
= P.E of M at rest + P.E of the spring
= 0 + 1/2 KD^2
So you would first multiply 400 by 2 which equals 800, then add 30 which is 830.
Then you would subtract 1000-830=170.
The total force of the 6 other players would be 170N.
Hoped this helped ☺️
The answer is Anorthosite. This is a kind of intrusive igneous rock composed mainly of calcium-rich plagioclase feldspar. All anorthosites located on Earth contain of rough crystals, but some illustrations of the rock reserved from the Moon are outstandingly crystalline.
Answer:
A push or pull exerted on an object
Answer:
i. + 22.5 m ii. 4.0 m
Explanation:
i. Image distance
Using the lens formula
1/u + 1/v = 1/f where f = focal length = + 18.0 m, u = object distance = distance of shark away from lens = + 90.0 m and v = image distance from lens = unknown
So, we find v
1/v = 1/f - 1/u
= 1/+18 - 1/+90
= (5 - 1)/90
= 4/90
v = 90/4
= + 22.5 m
So the image is real and formed 22.5 m away on the other side of the lens.
ii Length of Shark
Using the magnification formula, m = image height/object height = image distance/object distance. image height = 1.0 m where object height = length of shark.
m = image distance/object distance
= v/u
= +22.5/+90
= 0.25
0.25 = image height/object height
So,
object height = image height/0.25
= 1.0 m/0.25
= 4.0 m
So, the length of the shark is 4.0 m