Answer:
(a) FN = m (g -
)
(b) vmin = 17.146 m/s
Explanation:
The radius of the arc is
r = 30m
The normal force acting on the car form the highest point is
FN = m (g -
)
If the normal force become 0 we have
m (g -
) = 0
or
g -
= 0
This way, when FN = 0, then v = vmin, so
g -
= 0
vmin =
= ![\sqrt[.]{9.8 m/s^{2} * 30m } = 17.146 m/s](https://tex.z-dn.net/?f=%5Csqrt%5B.%5D%7B9.8%20m%2Fs%5E%7B2%7D%20%2A%2030m%20%7D%20%3D%2017.146%20m%2Fs)
Answer:
v = 8.65 m/s
Explanation:
Given that,
Distance covered by the doge, d = 45 m
Time taken, t = 5.2 s
We need to find its average speed. The total distance covered divided by the total time taken is called the average speed of an object. So,

So, the average speed is 8.65 m/s.
Answer:
the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.
Explanation:
We will use Bernoulli's theorem in order to determine the pressure lift:
ΔP = 1/2 (ρ)(v₂² - v₁²)
the generated pressure lift is ΔP = 1000 N/m²
Therefore,
1000 = 1/2(ρ)(v₂² - v₁²)
v₂² - v₁² = 2000 / ρ
v₂² = (2000 N/m² / 1.29 kg/m³) + (62 m/s)²
v₂ = √[ (2000 N/m² / 1.29 kg/m³) + (62 m/s)² ]
<em>v₂ = 73.4 m/s </em>
<em></em>
Therefore, the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.
Answer:
Frequency, 
Explanation:
Visible red light has a wavelength of 680 nanometers (6.8 x 10⁻⁷ m). The speed of light is 3.0 x 10 ⁸ m / s. What is the frequency of visible red light?
It is given that,
Wavelength of a visible red light is, 
Speed of light is, 
We need to find the frequency of visible red light. It can be calculated using below relation.

So, the frequency of visible red light is
.
The answer is no moons<span> at all. That's right, </span>Venus<span> (and the planet Mercury) are the only two planets that don't </span>have<span>a single natural </span>moon<span> orbiting them. Figuring out why is one question keeping astronomers busy as they study the Solar System.</span>