So we know the number of moles of each compound. If we need to know the concentration we must know the number of moles that the compounds react with...
The energy increases because the molecules in water move faster
To find the number of carbon atoms, we <span>multiply </span>the 3.28x10^24 by the ratio, 3/8. The total number of carbon atoms is 1.23 x 10^24 atoms. The total mass of the sample is each number of atoms divided by avogadro's number and multiplied by the molar mass of each. The total mass is 29.96 grams.
If it’s a carboxylic acid with an alcohol then it’ll form an ester and water.
Answer:
D = 28.2g
Explanation:
Initial temperature of metal (T1) = 155°C
Initial Temperature of calorimeter (T2) = 18.7°C
Final temperature of solution (T3) = 26.4°C
Specific heat capacity of water (C2) = 4.184J/g°C
Specific heat capacity of metal (C1) = 0.444J/g°C
Volume of water = 50.0mL
Assuming no heat loss
Heat energy lost by metal = heat energy gain by water + calorimeter
Heat energy (Q) = MC∇T
M = mass
C = specific heat capacity
∇T = change in temperature
Mass of metal = M1
Mass of water = M2
Density = mass / volume
Mass = density * volume
Density of water = 1g/mL
Mass(M2) = 1 * 50
Mass = 50g
Heat loss by the metal = heat gain by water + calorimeter
M1C1(T1 - T3) = M2C2(T3 - T2)
M1 * 0.444 * (155 - 26.4) = 50 * 4.184 * (26.4 - 18.7)
0.444M1 * 128.6 = 209.2 * 7.7
57.0984M1 = 1610.84
M1 = 1610.84 / 57.0984
M1 = 28.21g
The mass of the metal is 28.21g