What happens in the artificial transmutation is that the nucleous is bombarded with high energy particles which we can describe as kinetic energy and the idea for them is to induce what we call transmutation. Also what happens is that the high energy particles are accelerated. One of the examples is when nitrogen is transformed into hydrogen by combining its nucleous with an alpha particle
Based on the data provided;
- number of moles of helium gas is 1.25 moles
- pressure at peak temperature is 259.3 kPa
- internal pressure is above 256 kPa, therefore, the balloon will burst.
- pressure should be reduced to a value less than 256 kPa by reducing the temperature
<h3>What is the ideal has equation?</h3>
The ideal gas equation relatesthe pressure, volume, moles and temperature of a gas.
The moles of helium gas is calculated using the Ideal gas equation:
n is the number of moles of gas
R is molar gas constant = 8.314 L⋅kPa/Kmol
P is pressure = 239 kPa
T is temperature = 21°C = 294 K
V is volume = 12.8 L
Therefore;
n = PV/RT
n = 239 × 12.8 / 8.314 × 294
n = 1.25 moles
The number of moles of helium gas is 1.25 moles
At peak temperature, T = 46°C = 319 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 319/294
P2 = 259.3 kPa
The pressure at peak temperature is 259.3 kPa
At 42°C, T = 315 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 315/294
P2 = 256.07 kPa
Since the internal pressure is above 256 kPa, the balloon will burst.
The pressure should be reduced to a value less than 256 kPa by reducing the temperature.
Learn more about gas ideal gas equation at: brainly.com/question/12873752
<span>8.278 g/mL
The definition of density is mass per volume. So what you need to do is divide the known mass by the known volume. So
1.663 g / 0.2009 mL = 8.27775 g/mL
But you also have to keep track of significant figures. Since both 1.663 and 0.2009 have 4 significant figures each, you need to round the result to 4 significant figures. So
8.27775 g/mL = 8.278 g/mL</span>
Two protons and two neutrons are emitted and trapped as materials like uranium and thorium deep underground decay into radium and thorium, respectively. These alpha-particles transform into stable helium atoms as they take on electrons from their surroundings.
<h3>
What elements go through alpha decay?</h3>
Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear explosion.
<h3>
Where does alpha decay occur?</h3>
Alpha decay occurs most often in massive nuclei that have too large a proton to neutron ratio. An alpha particle, with its two protons and two neutrons, is a very stable configuration of particles.
Learn more about alpha decay here:
brainly.com/question/1898040
#SPJ4
This is known as polymerisation