Answer:
Yes, Copper (Cu) in its pure form is a reddish-brown metallic element with high ductility and malleability that is an excellent conductor of heat and electricity: atomic weight 63.54; atomic number 29; density 8.94 g/cm3; melting point 1083°C; and boiling point 2595°C.
Answer:
Following are the solution to this question:
Explanation:
Please find the complete question in the attachment.
Start of Laboratory
Dissolve 2-naphthol in the round bottom flask with ethanol.
Add pellets of sodium hydroxide and hot chips. Attach a condenser.
Heat for 20 minutes under reflux, until the put a burden dissolves.
After an additional hour, add 1-Bromobutane and reflux.
Pour the contents into a beaker with ice from a round bottom flask.
On a Bachner funnel, absorb the supernatant by vacuum filtration.
Utilizing cold water to rinse the material and dry that on the filter.
Ending of the Lab
140 s. It would take 140 s to swim 0.150 mi
.
<em>Step 1</em>. Convert the <em>time to seconds</em>
Time = 14 min × (60 s/1 min) + 34.56 s = 840 s + 34.56 s = 874.56 s
<em>Step 2</em>. Convert <em>miles to metres
</em>
Distance = 0.150 mi × (1609.3 m/1 mi) = 241.4 m
<em>Step 3.</em> Calculate the <em>time to swim 241.4 m</em>
Time = 241.4 m × (874.56 s/1500 m) = 140 s
(<em>As of 2012, the men’s freestyle record for 1500 m was 14:31.02</em>.)
Answer: The correct option is Current W flows at a higher rate than Current Z.
Explanation: To answer this question, we will require Ohm's law.
Ohm's Law states that the current flowing through a conductor across two points is directly proportional to the voltage difference across that two points.
Mathematically,

where, V = voltage
I = Current
R = resistance
For the given question, assuming that the resistance is constant. So, the current is directly proportional to the voltage.

Hence, as the current W is greater of all the given currents so, it will flow at a higher rate.
Therefore, the correct answer is Current W flows at a higher rate than Current Z.