Answer:
Electronegativity decrease in group from top to bottom
Explanation:
<u>Answer:</u> When the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The overall chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[\frac{1}{2}\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Hence, when the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
Explanation:
Rutherford conducted an experiment in which he took a thin gold particle film on which he passes alpha- particles. He noticed that:
- Most of the alpha particles get through the film and can be detected by the detector.
- Around small portion of the alpha particle deflected at small angles.
- A very very few alpha particle (approximately 1 out of 1 million alpha particles) just retraced their path which means come back from the center.
He concluded that:
<u>Most of the space of the atom is empty and in the center of the atom , there is solid mass which is the cause of the alpha particles to come back. He gave the term nucleus to this solid mass.</u>
D. The energy released or absorbed during the reaction