Answer:
860 J / mol
Explanation:
Enthalpy = Energy / no. of moles
no. of moles = mass / molar mass
Take the atomic mass of H = 1.0,
molar mass of H2 = 1.0 x 2
= 2.0
no. of moles of H2 = 9.00/2
= 4.5 mol
Hence,
Enthalpy = 3870 / 4.5
=860 J / mol
The metal which will reach the highest temperature is the metal with the lowest specific heat capacity.
<h3>What is the amount of heat added to each metal?</h3>
The amount of heat Q = mcΔT where
- m = mass of metal
- c = specific heat capacity of mateal and
- ΔT = temperature change
<h3>Temperature change of the metal</h3>
Making ΔT subject of the formula, we have
ΔT = Q/mc
Given that Q and m are the same for each metal,
ΔT ∝ 1/c
We see that the temperature change is inversely proportional to the specific heat capacity.
Since the metals are at the same temperature, the metal which will reach the highest temperature is the metal with the lowest specific heat capacity.
So, the metal which will reach the highest temperature is the metal with the lowest specific heat capacity.
Learn more about temperature here:
brainly.com/question/16559442
#SPJ12
Answer:
The correct answer is - 3.012×10^23 molecules
Explanation:
The number of molecules is present in any mole of an element or compound are the same. To find the molecules you need to multiply the number of the moles of the compound by Avogadro's number:
Moles are calculated from the molecular weight, for AlF3
= 26.98 + 3×19
= 26.98 + 57
= 83.98
Then moles in 42 grams:
= 42/83.98
= 0.5001190 moles
Now the number of molecules = moles*Avogadro's number
= 0.500110×6.022×10^23
= 3.011×10^23 molecules
I think there might be just 4 or 5 chloropropene.
The answer is particels of nuclis