Answer:
A) Mass = 32 g of KCl
Explanation:
Given data:
Mass of potassium chloride produced = ?
Mass of potassium chlorate = 52 g
Solution:
Chemical equation:
2KClO₃ → 2KCl + 3O₂
Number of moles of KClO₃:
Number of moles = mass/molar mass
Number of moles = 52 g/ 122.55 g/mol
Number of moles = 0.424 mol
Now we will compare the moles of KClO₃ and KCl
KClO₃ : KCl
2 : 2
0.424 : 0.424
Mass of KCl:
Mass = number of moles × molar mass
Mass = 0.424 mol × 74.55 g/mol
Mass = 32 g
ANSWERS:
Group 2 metal carbonates, nitrates and hydroxides decompose to heat to give the corresponding metal oxide and release CO2, NO2 and O2, and H2O respectively. The thermal stability increases down the group as theionic character of the compounds increases down the group.
Answer:
11.6g of NH₃(g) have to react
Explanation:
For the reaction:
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g) ΔH = -905kJ
<em>4 moles of ammonia produce 905kJ</em>
Thus, if you want to produce 154kJ of energy you need:
154kJ × (4 mol NH₃ / 905kJ) = <em>0.681moles of NH₃. </em>In mass -Molar mass ammonia is 17.031g/mol-
0.681mol NH₃ × (17.031g / mol) = <em>11.6g of NH₃(g) have to react</em>
Heat flows from our body to iron
The arrangement in space and the interatomic distances and angles of the atoms in crystals, usually determined by x-ray diffraction measurements