Answer:
4.27
Explanation:
Let's consider the dissociation of a generic monoprotic acid.
HA(aq) → H⁺(aq) + A⁻(aq)
The pH is 2.36. The concentration of H⁺ is:
pH = -log [H⁺]
[H⁺] = antilog -pH
[H⁺] = antilog -2.36 = 4.37 × 10⁻³ M
We know that the concentration of the acid Ca = 0.3535 M. We can find the acid dissociation constant using the following expression.
[H⁺] = √(Ca × Ka)
Ka = [H⁺]²/Ca
Ka = (4.37 × 10⁻³)²/0.3535
Ka = 5.40 × 10⁻⁵
The pKa is:
pKa = -log Ka = -log 5.40 × 10⁻⁵ = 4.27
Answer:
(1) Nuclear reactions entail a transition in the nucleus of an atom, which normally results in the formation of a new substance. Chemical reactions, on the other hand, only involve electron rearrangement and do not involve nuclei modifications. (4) Nuclear reactions are unaffected by the element's chemical form.
Explanation:
Hope this helps!
Please mark me as Brainlinieast.
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.
Chemical change. The heat from frying an egg causes the egg's protein to change permanently in texture and in appearance through a process.