Answer:
0.6257 M is the molarity of solution that is 5.50 percentage by mass oxalic acid.
Explanation:
Mass percentage of oxalic acid = 5.50%
This means that in 100 grams of solution there are 5.50 grams of oxalic acid.
Mass of solution , m = 100
Volume of the solution = V
Density of the solution = d = 1.024 g/mL
V = 97.66 mL = 0.09766 L
(1 mL = 0.001 L)
Moles of oxalic acid =
The molarity of the solution :
0.6257 M is the molarity of solution that is 5.50 percentage by mass oxalic acid.
Answer:
2.0202 grams
Explanation:
1.4% (m/v) glucose solution means: 1.4g glucose/100mL solution.
so ?g glucose = 144.3 mL soln
Now apply the conversion factor, and you have:
?g glucose = 144.3mL soln x (1.4g glucose/100mL soln).
so you have (144.3x1.4/100) g glucose= 2.0202 grams
Answer:
2.01V ( To three significant digits)
Explanation:
First we show the standard reduction potentials of Cu2+(aq)/Cu(s) system and Al3+(aq)/Al(s) system. We can clearly see from the balanced redox reaction equation that aluminium is the anode and was the oxidized specie while copper is the cathode and was the reduced specie. This observation is necessary when substituting values of concentration into the Nernst equation.
The next thing to do is to obtain the standard cell potential as shown in the image attached and subsequently substitute values of concentration and standard cell potential into the Nernst equation as shown. This gives the cell potential under the given conditions.
Answer:
The new volume of the balloon will be 6046.28 L
Explanation:
Initial pressure (P1) = 99 kpa
initial volume (V1) = 3000 L
Initial temperature = 39 C = 39 + 273 = 312 K
Final pressure (P2) = 45.5 kpa
Final temperature = 16 C = 16 +273 = 289K
Final volume = ????
To calculate the final volume using the general gas equation
P1 V1 / T1 = P2 V2 / T2
make V2 the subject of the formular
V2 = 99000 ×3000× 289 / 45500×312
V2 = 85833000 /14196
V2 = 6046.28 litres