Hello there.
<span>If we increase the force applied to an object and all other factors remain the same that amount of work will
</span><span>C. Increase
</span>
Answer:
15.75 m
Explanation:
First, let's look at the top brick by itself. In order for it not to tip over the bottom brick, its center of gravity must be right at the edge of the bottom brick. So the edge of the top brick must be 10.5 m from the edge of the bottom brick.
Now let's look at both bricks as a combined mass. We know the total length of this combined brick is 10.5 m + 21 m = 31.5 m. And we know that for it to not tip over the edge of the surface, its center of gravity must be at the edge. So the edge of the combined brick must be 31.5 m / 2 = 15.75 m from the edge of the surface.
The ball because the Kinetic Energy transfers from the bat to the ball, increasing the movement and acceleration of the ball because of the Kinetic Energy transferred from the origin force (The bat)
The correct answer for the question that is being presented above is this one: "c. transition state stage." During the transition state stage, the reaction of the atoms have the highest energy. It is also <span>during the formation of the activated complex in the middle of the experiment.</span>
Answer:
C
Explanation:
the formula is a + b = ab