The speed of sound at

is approximately v=343 m/s. The distance covered by the sound wave is

And the time it takes is

Now we want to find how far the light travels during this time. Light travels at speed

, therefore the distance it covers during this time is
The relationship between gravity and pressure in a nebula is that pressure balances gravity. <span>The </span>pressure<span> exerted by a static fluid depends only upon the depth of the fluid, the density of the fluid, and the acceleration of </span><span>gravity. The answer is B. </span>
Answer: option d.
Explanation:1) The
direction of the
field lines inform about the
sign of the charges.
The field lines <span>
extend from the positive charges to the negative charges, so you can conclude that the charge C is positve and both charge A and charge B are negative:
</span><span>
</span><span>
</span><span>Charge C: positive
</span><span>
</span><span>Charge A: negative
</span><span>
</span><span>Charge B: netative
</span>
2) The
density of the lines (number of lines in a region) inform about the
magnitude of the electric field.
Since the charges are at the same distance, the magnitude of the electric field informs directly about the magnitude of the force and that about the magnitude of the charges.
Since, there are the
double of lines between C and B than between C and A, the magnitude of
charge B is the double than the magnitud of charge A.
From the five options given (a throug e) the only that is consistent with that charges A and B have the same sign, that charge C has different sign, and that charge B is the double of charge A is:
The average acceleration in 0.67 m/s^2.
The average acceleration is calculated as change in velocity/time
a=(247*5/18)/(1.7*60)
=68.61/102=0.67 m/s^2
Therefor the average acceleration of the object is 0.67 m/s^2