If it starts from 0m/s...
s=?
u=0
a=-10
t=8
s=ut +1/2at^2
so s=(0×8)+ (0.5×-10×64)
s=0+(32×-10)
s=32×-10
s=-320metres
Answer:
D) the second at the doorknob
Explanation:
The torque exerted by a force is given by:
where
F is the magnitude of the force
d is the distance between the point of application of the force and the centre of rotation
is the angle between the direction of the force and d
In this problem, we have:
- Two forces of equal magnitude F
- Both forces are perpendicular to the door, so
- The first force is exerted at the midpoint of the door, while the 2nd force is applied at the doorknob. This means that d is the larger for the 2nd force
--> therefore, the 2nd force exerts a greater torque
Answer:
false : In distance time graph,time is shown on the x -axis
Answer:
Explanation:
Net electric field at the centre will be zero .
Since all the charges are equal and they all are symmetrically situated around the centre . So the electric field produced by each will cancel out each other and hence the resultant electric field will be zero . It happens because electric field is a vector quantity and therefore it adds up vectorially . All the four electric field will form two pairs , in each pair electric fields are acting in opposite direction . So they all cancel out to zero .
Base in your questions that ask what cause the bright lines seen in the emission spectrum and i think the best answer to that is the H2 gas is used when protons was heated so the electron absorb all the photons and get exited and resulted by given of a light.