Answer: 72.78% of the drivers are traveling between 70 and 80 miles per hour based on this distribution.
Step-by-step explanation:
Let X be a random variable that represents the speed of the drivers.
Given: population mean : M = 72 miles ,
Standard deviation: s= 3.2 miles
The probability that the drivers are traveling between 70 and 80 miles per hour based on this distribution:
![P(70\leq X\leq 80)=P(\frac{70-72}{3.2}\leq \frac{X-M}{s}\leq\frac{80-72}{3.2})\\\\= P(-0.625\leq Z\leq 2.5)\ \ \ \ \ [Z=\frac{X-M}{s}]\\\\=P(Z\leq2.5)-P(Z\leq -0.625)\\\\\\ =0.9938-0.2660\ \ \ [\text{Using p-value calculator}]\\\\=0.7278](https://tex.z-dn.net/?f=P%2870%5Cleq%20X%5Cleq%2080%29%3DP%28%5Cfrac%7B70-72%7D%7B3.2%7D%5Cleq%20%5Cfrac%7BX-M%7D%7Bs%7D%5Cleq%5Cfrac%7B80-72%7D%7B3.2%7D%29%5C%5C%5C%5C%3D%20P%28-0.625%5Cleq%20Z%5Cleq%202.5%29%5C%20%5C%20%5C%20%5C%20%5C%20%5BZ%3D%5Cfrac%7BX-M%7D%7Bs%7D%5D%5C%5C%5C%5C%3DP%28Z%5Cleq2.5%29-P%28Z%5Cleq%20-0.625%29%5C%5C%5C%5C%5C%5C%20%3D0.9938-0.2660%5C%20%5C%20%5C%20%5B%5Ctext%7BUsing%20p-value%20calculator%7D%5D%5C%5C%5C%5C%3D0.7278)
Hence, 72.78% of the drivers are traveling between 70 and 80 miles per hour based on this distribution.
Answer:
C and D
Step-by-step explanation:
C and D are the answers because when you simplify D which is 95/100 × 6 you get 0.95×6 which is the same thing as c
You must drive more than 40 miles to make option A the cheaper plan
<em><u>Solution:</u></em>
Two payment options to rent a car
Let "x" be the number of miles driven in one day
<em><u>You can pay $20 a day plus 25¢ a mile (Option A)</u></em>
25 cents is equal to 0.25 dollars
OPTION A : 20 + 0.25x
<em><u>You pay $10 a day plus 50¢ a mile (Option B)</u></em>
50 cents equal to 0.50 dollars
Option B: 10 + 0.50x
<em><u>For what amount of daily miles will option A be the cheaper plan ?</u></em>
For option A to be cheaper, Option A must be less than option B
Option A < Option B

Solve the inequality
Add -0.50x on both sides

Add - 20 on both sides,



Divide both sides by 0.25

Thus you must drive more than 40 miles to make option A the cheaper plan
Answer:
I think the answer is c but I didn’t simplify bc I don’t know what you mean
Step-by-step explanation: