Answer:
The near point of an eye with power of +2 dopters, u' = - 50 cm
Given:
Power of a contact lens, P = +2.0 diopters
Solution:
To calculate the near point, we need to find the focal length of the lens which is given by:
Power, P = 
where
f = focal length
Thus
f = 
f =
= + 0.5 m
The near point of the eye is the point distant such that the image formed at this point can be seen clearly by the eye.
Now, by using lens maker formula:

where
u = object distance = 25 cm = 0.25 m = near point of a normal eye
u' = image distance
Now,



Solving the above eqn, we get:
u' = - 0.5 m = - 50 cm
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
Answer:
A. 
B. 
C. 
Explanation:
Given:
- spring constant,

- mass attached,

A)
for a spring-mass system the frequency is given as:



B)
frequency is given as:



C)
Time period of a simple harmonic motion is given as:


Answer:
TRUE - In any collision between two objects, the colliding objects exert equal and opposite force upon each other. This is simply Newton's law of action-reaction.
Answer:
W = 3.12 J
Explanation:
Given the volume is 1.50*10^-3 m^3 and the coefficient of volume for aluminum is β = 69*10^-6 (°C)^-1. The temperature rises from 22°C to 320°C. The difference in temperature is 320 - 22 = 298°C, so ΔT = 298°C. To reiterate our known values we have:
β = 69*10^-6 (°C)^-1 V = 1.50*10^-3 m^3 ΔT = 298°C
So we can plug into the thermal expansion equation to find ΔV which is how much the volume expanded (I'll use d instead of Δ because of format):

So ΔV = 3.0843*10^-5 m^3
Now we have ΔV, next we have to solve for the work done by thermal expansion. The air pressure is 1.01 * 10^5 Pa
To get work, multiply the air pressure and the volume change.

W = 3.12 J
Hope this helps!