Saying no and not throwing fits and manners.
Answer:
The resonant frequency of this circuit is 14.5 kHz.
Explanation:
Given that,
Inductance of a parallel LCR circuit, 
Capacitance of parallel LCR circuit, 
At resonance the inductive reactance becomes equal to the capacitive reactance. The resonant frequency is given by :



or
f = 14.5 kHz
So, the resonant frequency of this circuit is 14.5 kHz. Hence, this is the required solution.
<span>it either changes the direction of the object or it stops the object in motion.</span>
Answer:
4.45×10¯¹¹ N
Explanation:
From the question given above, the following data were obtained:
Mass of ball (M₁) = 4 Kg
Mass of bowling pin (M₂) = 1.5 Kg
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Distance apart (r) = 3 m
Force of attraction (F) =?
The force of attraction between the ball and the bowling pin can be obtained as follow:
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 4 × 1.5 / 3²
F = 4.002×10¯¹⁰ / 9
F = 4.45×10¯¹¹ N
Therefore, the force of attraction between the ball and the bowling pin is 4.45×10¯¹¹ N
The answer is D. 32 m.
The simple equation that connects speed (v), time (t), and distance (d) can be expressed as:

⇒

It is given:

t = 10 s
d = ?
So: