1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Misha Larkins [42]
3 years ago
6

Explain why dissolving is a physical change

Physics
2 answers:
zloy xaker [14]3 years ago
8 0
Because the kinetic energy start to decrease, for example if we put sugar in a high temperature tea and we shake it what will happen to the sugar will the kinetic energy increase or decrease, it will probably decrease, just like us the people when we enter a cold room and we have a hot temp.
Natalija [7]3 years ago
5 0
It's a physical change because it is changing from one matter to another.
You might be interested in
Current that moves in one direction from negative to positive. May be created by a battery. Is generally NOT found in U.S. elect
Alla [95]

That's "<em>DC</em>" . . . Direct Current .

8 0
3 years ago
Read 2 more answers
The inventor of the electric cell was:<br> O Coulomb<br> Franklin<br> o Gilbert<br> O Volta
Tomtit [17]

Answer:

The inventor of the electric cell was:

Alessandro Volta (in other words, Volta)

Explanation:

3 0
3 years ago
Read 2 more answers
You are sitting on a deck of your house surrounded by oak trees. You hear the sound of an acorn hitting the deck. You wonder if
Black_prince [1.1K]

Answer: 96N

Explanation:

To calculate the velocity of the impact On the persons head, we have

h = gt²/2

14 = 9.81t²/2

t² = 28/9.8

t² = 2.86

t = 1.69s

V = u + at

V = 0 + 9.81*1.69

V = 16.58m/s

a(average) = (v1² + v2²) /2Δy

a(average) = 16.58² + 0)/2 * 0.005

a(average) = 274.8964/0.01

a(average) = 27489.64m/s²

Using newton's second law of motion,

F(average) = m * a(average)

F(average) = 0.0035 * 27489.64

F(average) = 96.21N

Therefore the force needed by the acorn to do much damage starts from 96N

8 0
3 years ago
How do you calculate the net force, i need a full explanation PLEASE
Lina20 [59]

Answer:

Once you have drawn the free-body diagram, you can use vector addition to find the net force acting on the object. We will consider three cases as we explore this idea:

Case 1: All forces lie on the same line.

If all of the forces lie on the same line (pointing left and right only, or up and down only, for example), determining the net force is as straightforward as adding the magnitudes of the forces in the positive direction, and subtracting off the magnitudes of the forces in the negative direction. (If two forces are equal and opposite, as is the case with the book resting on the table, the net force = 0)

Example: Consider a 1-kg ball falling due to gravity, experiencing an air resistance force of 5 N. There is a downward force on it due to gravity of 1 kg × 9.8 m/s2 = 9.8 N, and an upward force of 5 N. If we use the convention that up is positive, then the net force is 5 N - 9.8 N = -4.8 N, indicating a net force of 4.8 N in the downward direction.

Case 2: All forces lie on perpendicular axes and add to 0 along one axis.

In this case, due to forces adding to 0 in one direction, we only need to focus on the perpendicular direction when determining the net force. (Though knowledge that the forces in the first direction add to 0 can sometimes give us information about the forces in the perpendicular direction, such as when determining frictional forces in terms of the normal force magnitude.)

Example: A 0.25-kg toy car is pushed across the floor with a 3-N force acting to the right. A 2-N force of friction acts to oppose this motion. Note that gravity also acts downward on this car with a force of 0.25 kg × 9.8 m/s2= 2.45 N, and a normal force acts upward, also with 2.45 N. (How do we know this? Because there is no change in motion in the vertical direction as the car is pushed across the floor, hence the net force in the vertical direction must be 0.) This makes everything simplify to the one-dimensional case because the only forces that don’t cancel out are all along one direction. The net force on the car is then 3 N - 2 N = 1 N to the right.

Case 3: All forces are not confined to a line and do not lie on perpendicular axes.

If we know what direction the acceleration will be in, we will choose a coordinate system where that direction lies on the positive x-axis or the positive y-axis. From there, we break each force vector into x- and y-components. Since motion in one direction is constant, the sum of the forces in that direction must be 0. The forces in the other direction are then the only contributors to the net force and this case has reduced to Case 2.

If we do not know what direction the acceleration will be in, we can choose any Cartesian coordinate system, though it is usually most convenient to choose one in which one or more of the forces lie on an axis. Break each force vector into x- and y-components. Determine the net force in the x direction and the net force in the y direction separately. The result gives the x- and y-coordinates of the net force.

Example: A 0.25-kg car rolls without friction down a 30-degree incline due to gravity.

We will use a coordinate system aligned with the ramp as shown. The free-body diagram consists of gravity acting straight down and the normal force acting perpendicular to the surface.

We must break the gravitational force in to x- and y-components, which gives:

F_{gx} = F_g\sin(\theta)\\ F_{gy} = F_g\cos(\theta)F

gx

​

=F

g

​

sin(θ)

F

gy

​

=F

g

​

cos(θ)

Since motion in the y direction is constant, we know that the net force in the y direction must be 0:

F_N - F_{gy} = 0F

N

​

−F

gy

​

=0

(Note: This equation allows us to determine the magnitude of the normal force.)

In the x direction, the only force is Fgx, hence:

F_{net} = F_{gx} = F_g\sin(\theta) = mg\sin(\theta) = 0.25\times9.8\times\sin(30) = 1.23 \text{ N}F

net

​

=F

gx

​

=F

g

​

sin(θ)=mgsin(θ)=0.25×9.8×sin(30)=1.23 N

7 0
3 years ago
The height of the mercury column in a barometer is 756 mm Hg on
notsponge [240]

Answer:

    p = 1.0076 10⁵ Pa

Explanation:

Atmospheric pressure is given by the relation

         P = rho g h

In this case they indicate that the height of the column of mercury is h = 756 mm Hg

let's reduce the height to the SI system

          h = 756 mm (1m / 1000 mm)

          h = 0.756 m

let's calculate

        P = 13600 9.8 0.756

        p = 1.0076 10⁵ Pa

7 0
2 years ago
Other questions:
  • A laser beam is incident on a plate of glass that is 2.8 cm thick. The glass has an index of refraction of 1.6 and the angle of
    10·1 answer
  • What is the relationship between force and motion described by Newton's first law
    14·1 answer
  • If a frog is the prey what could be the predator ?
    12·2 answers
  • If the force being applied to an object is doubled, what will happen to its<br> acceleration?
    12·1 answer
  • An unbalanced force of 500 N is applied to a 75 kg object. What is the acceleration of the object?
    14·2 answers
  • Normal atmospheric pressure at sea level is ?
    11·1 answer
  • Arthur conducts a controlled experiment several times. The results of each test show that his hypothesis is not supported. Which
    15·1 answer
  • The moon Umbriel orbits Uranus (mass = 8.68 x 10^25 kg) at a distance of 2.66 x 10^8 m. What is Umbriel's orbital period (in hou
    7·1 answer
  • Gravity prevents planets from flying off at a
    7·1 answer
  • After the right string is cut, the meterstick swings down to where it is vertical for an instant before it swings back up in the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!