We can solve both parts of the problem by using the lens equation:
![\frac{1}{f} = \frac{1}{d_o}+ \frac{1}{d_i}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bf%7D%20%3D%20%20%5Cfrac%7B1%7D%7Bd_o%7D%2B%20%5Cfrac%7B1%7D%7Bd_i%7D%20%20)
where
f is the focal length
![d_o](https://tex.z-dn.net/?f=d_o)
is the distance of the object from the lens
![d_i](https://tex.z-dn.net/?f=d_i%20)
is the distance of the image from the lens
Let's also keep in mind that for a converging lens, the focal length is taken as positive, so f=+19.0 cm.
(a) In this case,
![d_o = 41 cm](https://tex.z-dn.net/?f=d_o%20%3D%2041%20cm)
. So, the lens equation becomes
![\frac{1}{d_i}= \frac{1}{f}- \frac{1}{d_o}= \frac{1}{19 cm}- \frac{1}{41 cm} =0.028 cm^{-1}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bd_i%7D%3D%20%5Cfrac%7B1%7D%7Bf%7D-%20%5Cfrac%7B1%7D%7Bd_o%7D%3D%20%5Cfrac%7B1%7D%7B19%20cm%7D-%20%5Cfrac%7B1%7D%7B41%20cm%7D%20%3D0.028%20cm%5E%7B-1%7D%20%20%20%20)
And so the distance of the image from the lens is
![d_i = \frac{1}{0.028 cm^{-1}} =+35.4 cm](https://tex.z-dn.net/?f=d_i%20%3D%20%20%5Cfrac%7B1%7D%7B0.028%20cm%5E%7B-1%7D%7D%20%3D%2B35.4%20cm)
where the positive sign means the image is real, i.e. is located behind the lens (opposite side of the real object)
(b) In this case,
![d_o = 14 cm](https://tex.z-dn.net/?f=d_o%20%3D%2014%20cm)
. So, the lens equation becomes
![\frac{1}{d_i}= \frac{1}{f}- \frac{1}{d_o}= \frac{1}{19 cm}- \frac{1}{14 cm} =-0.019 cm^{-1}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bd_i%7D%3D%20%5Cfrac%7B1%7D%7Bf%7D-%20%5Cfrac%7B1%7D%7Bd_o%7D%3D%20%5Cfrac%7B1%7D%7B19%20cm%7D-%20%5Cfrac%7B1%7D%7B14%20cm%7D%20%3D-0.019%20cm%5E%7B-1%7D%20)
And so the distance of the image from the lens is
![d_i = \frac{1}{-0.019 cm^{-1}} =-53.2 cm](https://tex.z-dn.net/?f=d_i%20%3D%20%5Cfrac%7B1%7D%7B-0.019%20cm%5E%7B-1%7D%7D%20%3D-53.2%20cm)
where the negative sign means the image is virtual, i.e. is located in front of the lens (i.e. on the same side of the real object)