Answer:
.................iiiiiiiiiiiiiiiiiiiiiii
If the person did not vote it can be:
30/100 (30%) people in the city are conservatives, and only 65/100 voted - so 45/100 did not voted.
Liberals are 50% of the city population (1/2), and 82/100 of them voted, so 100/100-82/100=8/100 did not voted!
So let’s make 2 probability events:
1) A person did not voted
2) a person is liberal
Probability that the person is a liberal: 1/2
Person didn’t voted and it’s a liberal:
1/2*8/100= 8/200=4/100 [*]
[*] To count the probability of two probability events you need to multiply them.
Answer:
19. 11
21. 119
Step-by-step explanation:
19.
(-5)² - [4(-3 ∙ 2 + 4)² + 3] + 5 =
= (-5)² - [4(-6 + 4)² + 3] + 5
= (-5)² - [4(-2)² + 3] + 5
= (-5)² - [4(4) + 3] + 5
= (-5)² - [16 + 3] + 5
= 25 - 19 + 5
= 6 + 5
= 11
21.
5 - 8[6 - (3 ∙ 2 - 8 + 2|4 ÷ -2 + (-3)| - 4) - 7 · 2] - 3² · (-2) =
= 5 - 8[6 - (3 ∙ 2 - 8 + 2|-2 + (-3)| - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (3 ∙ 2 - 8 + 2|-5| - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (3 ∙ 2 - 8 + 2(5) - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (6 - 8 + 10 - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (-2 + 10 - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - (8 - 4) - 7 · 2] - 3² · (-2)
= 5 - 8[6 - 4 - 7 · 2] - 3² · (-2)
= 5 - 8[6 - 4 - 14] - 3² · (-2)
= 5 - 8[2 - 14] - 3² · (-2)
= 5 - 8[-12] - 3² · (-2)
= 5 - (-96) - 9 · (-2)
= 5 + 96 + 18
= 101 + 18
= 119