Acceleration x time = velocity
Since you're given acceleration and time, just plug the values into the equation.
3

x 1.1 s = ?
Solve that equation, and remember your velocity should be in m/s.
M1U1 + M2V2 = (M1+M2)V, where M1 is the mass of the moving car, M2 is the mass of the stationary car, U1 is the initial velocity, and V is the common velocity after collision.
therefore;
(1060× 16) + (1830 ×0) = (1060 +1830) V
16960 = 2890 V
V = 5.869 m/s
The velocity of the cars after collision will be 5.689 m/s
Answer: 0°
Explanation:
Step 1: Squaring the given equation and simplifying it
Let θ be the angle between a and b.
Given: a+b=c
Squaring on both sides:
... (a+b) . (a+b) = c.c
> |a|² + |b|² + 2(a.b) = |c|²
> |a|² + |b|² + 2|a| |b| cos 0 = |c|²
a.b = |a| |b| cos 0]
We are also given;
|a+|b| = |c|
Squaring above equation
> |a|² + |b|² + 2|a| |b| = |c|²
Step 2: Comparing the equations:
Comparing eq( insert: small n)(1) and (2)
We get, cos 0 = 1
> 0 = 0°
Final answer: 0°
[Reminders: every letters in here has an arrow above on it]
Pressure difference (voltage)
<span />