Acceleration = (change in speed) / (time for the change)
Change in speed = (end speed) - (start speed) = (15 m/s - 7 m/s) = 8 m/s
time for the change = 2 minutes = 120 seconds
Acceleration = (8 m/s) / (120 seconds)
Acceleration = 0.067 m/s²
The correct answer is 40.5 Newtons just finished the quiz and 36.5 was incorrect.
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
Let the observer be 'd' distance away from the thunderstorm and let light take 't' time to reach the observer
Since the speed of sound and light remains constant in a particular medium, we can use
Speed = Distance/Time
For light,
3 x 10^8 = d/t
t = d/(3 x 10^8) -1
For sound,
339 = d/(t + 30) -2
Putting value from 1 in 2.
d = 10^4 m(approx)
Answer:B
Explanation:
For work to be done, the object must move some distance as a result of a force