A force of charge that drive around a circuit is call electeons
Complete question:
Consider the hypothetical reaction 4A + 2B → C + 3D
Over an interval of 4.0 s the average rate of change of the concentration of B was measured to be -0.0760 M/s. What is the final concentration of A at the end of this same interval if its concentration was initially 1.600 M?
Answer:
the final concentration of A is 0.992 M.
Explanation:
Given;
time of reaction, t = 4.0 s
rate of change of the concentration of B = -0.0760 M/s
initial concentration of A = 1.600 M
⇒Determine the rate of change of the concentration of A.
From the given reaction: 4A + 2B → C + 3D
2 moles of B ---------------> 4 moles of A
-0.0760 M/s of B -----------> x

⇒Determine the change in concentration of A after 4s;
ΔA = -0.152 M/s x 4s
ΔA = -0.608 M
⇒ Determine the final concentration of A after 4s
A = A₀ + ΔA
A = 1.6 M + (-0.608 M)
A = 1.6 M - 0.608 M
A = 0.992 M
Therefore, the final concentration of A is 0.992 M.
A theory is an explanation that unites the findings of many experiments, and it can be changed when new experimental results need to be explained.
Answer:
I = 9.82 10⁻⁷ W / m²
Explanation:
The intensity of the sound wave is the energy of the wave between the order per unit area of the same
I = P / A = E / T A
the energy is calculated by integrating the mechanical energy in a period, where the mass is changed by the density and ‘s’ is the amplitude of the sound wave
I = ½ ρ v (w s)²
I = ½ 1.35 328 (2π 530 2.00 10⁻⁸)²
I = 221.4 (4.435 10⁻⁹)
I = 9.82 10⁻⁷ W / m²
When object is moving in circular path then if suddenly its force reduced to zero then it will move to straight line
This is defined by Newton's First Law
So as per first law of Newton we can say
When there is no net force on an object then it will continue its state of motion in its original state without any change in it.
This is also known as law of inertia
so correct answer will be
Newton's 1st law