Answer:
By nuclear fission
Explanation:
<u>The sun generates enormous energy through the process of nuclear fusion.</u>
<em>The core or the innermost part of the sun is characterized by high temperature and pressure. These two factors cause the separation of nuclei from electrons and the fusion of hydrogen nuclei to form a helium atom. </em>
During the fusion process, energy is released.
Answer:
advantages of using renewable energy resource
it is safer and cleaner
it does not produces green house gas and has 0 carbon emission
for producing electricity we use solar and wind power that does not harm the environment
advantages of using non renewable energy resource
they are abundant
they are affordable
easy to use
they are easily accessible and compatible
easy to store
Answer:
a) The student feel light
b) Nbottom = 758 N
c) N'top= 236 N
d) N'bottom= 1055 N
Explanation:
a) W= 659N , Ntop= 560N
W > Ntop ---> Student feel less weight
b) Top:
∑F= W - Ntop = m.v²/R
m.v²/R = 659N - 560 N = 99 N
Bottom:
∑F= Nbottom- W = m.v²/R
Nbottom= W + m.v²/R = 659N + 99 N = 758N
c) W= 659 N , Ntop= 560 N , v'=2.v
N'top= ?
∑F= W - N'top = m.v'²/R
N'top= W - 4.m.v²/R
N'top = 659 N - 4. 99 N = 263 N
d) N'bottom = ?
∑Fbottom= N'bottom- W = m.v'²/R
N'bottom = W + 4.m.v²/R = 659 N + 4. 99 N = 1055 N
Answer:
Power in the circuit is 0.1 amp
Explanation:
The power in the circuit is given by the formula
P = V x I
Where P is Power, V is voltage supplied and I is current in circuit.
so, I = P/v
= 2/20
=0.1 A
Study more about power
<u>https://brainly.in/question/1063947</u>
The best name for the ionic bond that forms between them is Beryllium Bromide.
We have been provided with data,
Beryllium charge, q = 2
Bromine charge, q = -1
As we know the valance electron of Be is +2 and the valance electron of bromine is -1. Since one is metallic and the other is non-metallic.
Now, when they combine they exchange valance electron, and bromine change into bromide so they form Beryllium Bromide.
So, the best name for the ionic bond that forms between them is Beryllium Bromide.
Learn more about ionic bonds here:
brainly.com/question/21464719
#SPJ4