1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
9

A stone is thrown horizontally at a velocity of 12.38 m/s from a tree house that is

Physics
1 answer:
andrew11 [14]3 years ago
6 0

Answer:

34.8 m/s

Explanation:

Since we're only interested in vertical velocity we can ignore anything horizontal.

We have the following information (in the vertical direction)

d = 61.8

a = 9.8

vi = 0

vf = ?

The equation combining all these variables is:

v_f^2 = v_i^2 + 2ad\\v_f^2=0+2(9.8)(61.8)\\v_f^2=1211.28\\v_f=\sqrt{1211.28}\\v_f=34.8

You might be interested in
A car slid off an icy 10m bridge and landed 12m away from the bridge. How much time was the car in the air? (Hunt: Projectile)
Contact [7]

You will use the height of the bridge from the ground.

Solution:

Formula to be used is y=Viy(t)+g(t^2)/2

Where:

Vi=initial velocity which is 0 m/s

 y=10 m

Gravitational acceleration or g =9.8m/s^2

T= time you need

Substitute all the given to the formula

10m=(0m/s)(t)+(9.8m/s^2)(t^2)/2

10mx2=9.8m/s^2(t^2)

Now isolate the variable you want to find which is T or time

10mx2/9.8m/s^2=t^2

20m/9.8m/s^2=t^2

Square root of 2.04= square root of t^2

T=1.43 secs

The answer is 1.43 seconds

8 0
3 years ago
Read 2 more answers
What is the current of the ammeter?
DaniilM [7]

Answer:

.6 A

Explanation:

V = IR

V/R = I

12/20 = I = .6 A

3 0
1 year ago
Read 2 more answers
What are the names of the 4 types of fronts? How are they created?
jeka57 [31]

Answer:

Stationary Front, warm front, cold front, Occluded Front.

Explanation:

Stationary Front. When the surface position of a front does not change (when two air masses are unable to push against each other; a draw), a stationary front is formed.

cold front is the leading edge of a cooler mass of air at ground level that replaces a warmer mass of air and lies within a pronounced surface trough of low pressure. It often forms behind an extratropical cyclone (to the west in the Northern Hemisphere, to the east in the Southern), at the leading edge of its cold air advection pattern—known as the cyclone's dry "conveyor belt" flow. Temperature differences across the boundary can exceed 30 °C (86 °F) from one side to the other. When enough moisture is present, rain can occur along the boundary. If there is significant instability along the boundary, a narrow line of thunderstorms can form along the frontal zone. If instability is weak, a broad shield of rain can move in behind the front, and evaporative cooling of the rain can increase the temperature difference across the front. Cold fronts are stronger in the fall and spring transition seasons and weakest during the summer.

A warm front is a density discontinuity located at the leading edge of a homogeneous warm air mass, and is typically located on the equator-facing edge of an isotherm gradient. Warm fronts lie within broader troughs of low pressure than cold fronts, and move more slowly than the cold fronts which usually follow because cold air is denser and less easy to remove from the Earth's surface. This also forces temperature differences across warm fronts to be broader in scale. Clouds ahead of the warm front are mostly stratiform, and rainfall gradually increases as the front approaches. Fog can also occur preceding a warm frontal passage. Clearing and warming is usually rapid after frontal passage. If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may continue. On weather maps, the surface location of a warm front is marked with a red line of semicircles pointing in the direction of travel.

In meteorology, an occluded front is a weather front formed during the process of cyclogenesis. The classical view of an occluded front is that they are formed when a cold front overtakes a warm front, such that the warm air is separated (occluded) from the cyclone center at the surface. The point where the warm front becomes the occluded front is called the triple point; a new area of low-pressure that develops at this point is called a triple-point low. A more modern view of the formation process suggests that occluded fronts form directly during the wrap-up of the baroclinic zone during cyclogenesis, and then lengthen due to flow deformation and rotation around the cyclone.

3 0
2 years ago
Read 2 more answers
Free Fall: A rock is thrown directly upward from the edge of a flat roof of a building that is 56.3 meters tall. The rock misses
Slav-nsk [51]

Answer:

v₀₁= 5.525 m / s

Explanation

Freefall Formulas :

The sign of acceleration due to gravity  (g) is positive if the object is going down and negative if the object is going up.

vf= v₀+gt  

vf²=v₀²+2*g*h

h= v₀t+ (1/2)*g*t²

Where:  

h: hight in meters (m)    

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

g: acceleration due to gravity in m/s²

Kinematics of the rock from the starting point with vo until it reaches its maximum height:

vf₁= v₀₁-gt₁  :vf₁ =0 to maximum height

0= v₀₁-gt₁

v₀₁ = g*t₁

t₁ =v₀₁ / g      Equation (1)

vf₁²= v₀₁²-2*g*h₁   : vf₁ =0 to maximum height

0 = v₀₁²-2*g*h₁

2*g*h₁ = v₀₁²

h₁ = (v₀₁²)/(2g)   Equation (2)

Kinematics of the rock when it falls from the maximum height until it touches the floor

h₂= v₀₂t+ (1/2)*g*t₂²  v₀₂=vf₁ =0

h₂= 0+ (1/2)*g*t₂²

h₂= (1/2)*g*t₂²   Equation (3)

Equation that relates h₁ to h₂

h₂=  h₁ + 56.3  ,  h₁ = (v₀₁²)/(2g)

h₂= (v₀₁²)/(2g) + 56.3  Equation (4)

Equation that relates t₁ to t₂

t₁ + t₂ =4 s

t₂ =4 -t₁

t₂ =4 -(v₀₁/g )

Calculation of v₀₁

We replace equation 4 and equation 5 in equation 3

(v₀₁²)/(2g) + 56.3 = (1/2)*g*(4 -(v₀₁/g ) )²

(v₀₁²)/(2g) + 56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g )+((v₀₁/g )²)

we eliminate (v₀₁²)/(2g) on both sides of the equation

56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g ))

56.3 = 78.4 - 4*v₀₁

4*v₀₁ =78.4-56.3

v₀₁= (78.4-56.3) / ( 4)

v₀₁= 5.525 m / s

7 0
3 years ago
What is the kind of energy that comes from movement?
Sergio [31]

Answer:

motion energy

Explanation:

motion wnergy is the sum of potential and kinetic energy

4 0
3 years ago
Read 2 more answers
Other questions:
  • A 15.4 kg block is dragged over a rough, horizontal surface by a constant force of 182 N acting at an angle of 24◦ above the hor
    5·1 answer
  • This solid layer of the earth is made of mostly iron and nickel.
    5·1 answer
  • What happens to scientific laws if new, unexpected data is discovered? a They become scientific theories. b They are revised. c
    9·1 answer
  • A block of mass m = 0.13 kg is set against a spring with a spring constant of k1 = 623 N/m which has been compressed by a distan
    8·1 answer
  • Two trains start from towns 224 mi apart and travel towards each other on parallel tracks. They pass each other 1.6 hr later. If
    9·1 answer
  • A bubble, located 0.200 m beneath the surface in a glass of beer, rises to the top. The air pressure at the top is 1.01x10⁵ Pa.
    13·1 answer
  • Jesse watches the Moon rise around 6:00 PM. When will the Moon most likely set?
    14·2 answers
  • A car travels 300km in six hour. What is the average speed
    13·1 answer
  • A question to think about on units: Suppose we wanted to exchange scientific information with a newly discovered species of inte
    6·1 answer
  • Help me with this please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!