1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balandron [24]
3 years ago
5

Will you chech and finish these for me, because I am stumped with them.

Physics
1 answer:
Paha777 [63]3 years ago
7 0
So basically 3 down is
You might be interested in
Everyone open this please!
notsponge [240]

Answer:

yeah i knowwwwwwwwwwwwww

Explanation:

7 0
2 years ago
Read 2 more answers
After observing a moth that is camouflaged against dark-colored bark, a scientist asks a question. The scientist discovers that
Rasek [7]
Because of how it's worded the answer would most likely be number four                                                                                       

6 0
3 years ago
Read 2 more answers
When atoms of an element are excited, they emit specific wavelengths of light. How is this similar to a fingerprint when Fraunho
Anika [276]

Answer:

As you may know, each element has a "fixed" number of protons and electrons.

These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.

We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)

Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.

Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.

And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.

7 0
3 years ago
Anyone knows this? Please answer... Spam will be reported.
Yakvenalex [24]

Answer:

The correct option is;

The assertion is correct, but reason wrong

Explanation:

The question is with regards to the relationship between work, energy, power, and velocity

The mass of each of the persons running up the staircase = Different

The time it takes each person to run up the stairs = Equal time

Let, 'm₁' and 'm₂' represent the mass of each of the persons that ran up the stairs and m₁ > m₂

Let 't' represent the equal time it takes then to run up the stairs

Let 'h' represent the height of the stairs

The energy, 'E', it takes to run up the stairs is equal to the potential energy, P.E., obtained at the top of the stairs

P.E. = m·g·h

Where;

m = The mass of the person at an elevated height

g = The acceleration due to gravity = Constant

h = The height reached above ground level

Given that the height reached is the same for both of the persons, we have

For m₁, P.E.₁ = m₁·g·h and for m₂, P.E.₂ = m₂·g·h

Therefore, where, m₁ > m₂, we have;

P.E.₁ > P.E.₂

∴ E₁ > E₂

Power, 'P', is the rate at which energy is expended

∴ Power, P = E/t

∴ P₁ = E₁/t  > P₂ = E₂/t

Therefore, the person with the greater mass, 'm₁', uses more power than the person of mass 'm₂', in running up the stairs

Therefore, the assertion is correct

The average velocity, vₐ = (Total distance traveled, d)/(Total time taken, t)

Given that the distance, 'd', covered in running up the stairs by both persons is the same, and the time it takes them to complete the distance, 't', is also the same, we have;

The average velocity of the person with the greater mass m₁ is the same as the average velocity of the person with mass, m₂

Therefore, the reason is wrong

The answer is that the assertion is correct, but reason wrong

6 0
2 years ago
Which of the following is an example of Newton's second law of motion?
laiz [17]

Answer:

B

Explanation:

Newton’s Second Law of Motion

Newton’s Second Law of Motion states that ‘when an object is acted on by an outside force, the mass of the object equals the strength of the force times the resulting acceleration’.

This can be demonstrated dropping a rock or and tissue at the same time from a ladder. They fall at an equal rate—their acceleration is constant due to the force of gravity acting on them.

The rock's impact will be a much greater force when it hits the ground, because of its greater mass. If you drop the two objects into a dish of water, you can see how different the force of impact for each object was, based on the splash made in the water by each one.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Aisha is sitting on frictionless ice and holding two heavy ski boots. Aisha weighs 637 N, and each boot has a mass of 4.50 kg. A
    14·1 answer
  • What most likley happens to the air at the beach at night
    7·2 answers
  • What is the total precentage of radiation that is reflected by earths atmosphere
    11·1 answer
  • At what time of day would you be most likely to find that the air over water is significantly warmer than the air over land near
    5·2 answers
  • Three small spheres, having masses m1 = 1 kg, m2 = 3 kg, and m3 = 4 kg, are held fixed on the x axis in deep space where the eff
    13·2 answers
  • You matter .<br>Until you Multiply yerself by the speed of Light Squared. <br>Then you Energy.<br>​
    5·2 answers
  • 5. The speed of light in water is​
    12·2 answers
  • What can waves be transmitted by? How do you know?
    7·1 answer
  • Ball A, moving towards the right, collides with
    9·1 answer
  • Physics acceleration
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!