Step-by-step explanation:
please mark me as brainlest
Answer:
The answer is below
Step-by-step explanation:
Let S denote syntax errors and L denote logic errors.
Given that P(S) = 36% = 0.36, P(L) = 47% = 0.47, P(S ∪ L) = 56% = 0.56
a) The probability a program contains both error types = P(S ∩ L)
The probability that the programs contains only syntax error = P(S ∩ L') = P(S ∪ L) - P(L) = 56% - 47% = 9%
The probability that the programs contains only logic error = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
P(S ∩ L) = P(S ∪ L) - [P(S ∩ L') + P(S' ∩ L)] =56% - (9% + 20%) = 56% - 29% = 27%
b) Probability a program contains neither error type= P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
c) The probability a program has logic errors, but not syntax errors = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
d) The probability a program either has no syntax errors or has no logic errors = P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
(a) If <em>f(x)</em> is to be a proper density function, then its integral over the given support must evaulate to 1:

For the integral, substitute <em>u</em> = <em>x</em> ² and d<em>u</em> = 2<em>x</em> d<em>x</em>. Then as <em>x</em> → 0, <em>u</em> → 0; as <em>x</em> → ∞, <em>u</em> → ∞:

which reduces to
<em>c</em> / 2 (0 + 1) = 1 → <em>c</em> = 2
(b) Find the probability P(1 < <em>X </em>< 3) by integrating the density function over [1, 3] (I'll omit the steps because it's the same process as in (a)):

X=5/2 , remove parentheses , collect like terms, move terms , collect like terms and calculate the sum , then divide both sides by 2 , hope this helped broski
Answer is 3. You have to do what’s in the parentheses first: 10+2-8=4. Then multiply 4 • 2 = 8 and then finally subtract: 8-5=3