Here, we are required to determine how fast is you drink, sitting in the cup holder, travelling relative to the car.
- The speed of the drink, sitting in the cup holder, relative to the car is; 0m/s
From the laws of relative motion,
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)</em>
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)when object A and Object B are travelling with speed a and b respectively in opposite directions, the speed of Object A relative to B is; (a+b)</em>
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)when object A and Object B are travelling with speed a and b respectively in opposite directions, the speed of Object A relative to B is; (a+b)when object A and Object B are travelling with speed a and b respectively in the same direction, where speed a = speed b, then the speed of object A relative to object B is; zero(0).</em>
Evidently, the scenario in the question is similar to the third scenario above. The cup, sitting in the cup holder is travelling with the car at the same constant speed 10m/s.
Therefore, the speed of the drink relative to the car is zero(0).
Read more:
brainly.com/question/20549055
F = ma
6.25 N = 0.4 kg · a
a = (6.25/0.4) m/s² since N=kg·m/s²
a = 15.625 m/s²
The answer is c) 15.6 m/s²
(Note that the mass of the soccer player is irrelevant.)
This is the Doppler effect.
1. As the sound leaves the horn the sound waves are at first close to each other and as they move outwards they become further apart. The closer the sound waves are the louder the noise.
As the car gets the closer the sound waves get closer, so the horn becomes louder.
2. As the horn moves away, the sound waves become less frequent, causing the pitch to get lower.
<u>Answer:</u>
The matter does not move in solid state but vibrates.
<u>Explanation:</u>
The atoms inside the matter cannot move or shift their positions without any external force but makes some small vibration movements. Generally in solids, the particles are bound by the attractive forces acting in between the atoms inside the matter.
The small vibrations that are happening inside the matter are because of the external factors like temperature. The increase in temperature raises the kinetic energy of the atoms inside and makes them move faster and this results in the vibration of the matter.
Kinetic energy is directly proportional to the mass of the object and to the square of its velocity: K.E. = 1/2 m v2.