Answer:
The value is 
The direction is into the surface
Explanation:
From the question we are told that
The mass density is 
The coefficient of kinetic friction is
The current the wire carries is 
Generally the magnetic force acting on the wire is mathematically represented as

Here
is the frictional force which is mathematically represented as

While
is the magnetic force which is mathematically represented as

Here
is the angle between the direction of the force and that of the current
So

So

=> ![B = \mu_k * \frac{m}{L} * [\frac{g}{I} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%20%5Cmu_k%20%2A%20%20%5Cfrac%7Bm%7D%7BL%7D%20%2A%20%5B%5Cfrac%7Bg%7D%7BI%7D%20%5D)
=> ![B = 0.25 * 0.117 * [\frac{9.8}{1.24} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%200.25%20%2A%20%200.117%20%20%2A%20%5B%5Cfrac%7B9.8%7D%7B1.24%7D%20%5D)
=> 
Apply the right hand curling rule , the thumb pointing towards that direction of the current we see that the direction of the magnetic field is into the surface as shown on the first uploaded image
Answer:
96.7 s
Explanation:
Time of flight in projectile can be calculated thus:
T = 2 × u × sin ϴ/ g
Where;
T = time of flight (s)
u = initial velocity (m/s)
ϴ = Angle of projectile (°)
g = acceleration due to gravity (9.8m/s²)
Based on the provided information; u = 670m/s, ϴ = 45°
Hence, using T = 2.u.sin ϴ/ g
T = 2 × 670 × sin 45° ÷ 9.8
T = 1340 × 0.7071 ÷ 9.8
T = 947.52 ÷ 9.8
T = 96.68
T = 96.7s
Answer:
what was the answer? Was it 0.98?
The question can be solved using conservation of linear momentum.
= 0.06kg and
= 0.03kg
Let the initial velocity of Marble A be ,
= 0.7m/s
Let the initial velocity of Marble B be,
= 0m/s
Let the velocity of Marble A after collisiong ,
= -0,02m/s
Let the velocity of Marble B after collision be 
From the conservation of linear momentum equation. We get,

Substituting the values we get,
(0.06)(0.7) + 0 = (0.06)(-0.02) + (0.03)
we get,
= 1.44m/s