"Frequency decreases" is the one way among the following choices given in the question that <span>frequency change as wavelength increases. The correct option among all the options that are given in the question is the second option. I hope that this is the answer that has actually come to your desired help.</span>
Answer:
letter B
none zero digit are significant figures
Answer:

Explanation:
<u>Vertical Launch Upwards</u>
In a vertical launch upwards, an object is launched vertically up without taking into consideration friction with the air.
If vo is the initial speed and g is the acceleration of gravity, the maximum height reached by the object is given by:

The tennis ball was thrown straight up with a speed of v0=22.5 m/s. The acceleration of gravity is g=9.81\ m/s^2, thus:


Answer:
Coriolis Effect
Explanation:
The Coriolis effect is responsible for the deflection of winds to the right in the Northern hemisphere and to the right in the Southern hemisphere. It is an effect that occurs because of the rotation of the earth around its axis.
The implication of this is that in areas of low pressure in the Northern hemisphere, winds tend to blow in anticlockwise direction, and in areas of high pressure, it blows in a clockwise direction. The opposite of this happens in the Southern hemisphere.
Answer:
Taking gravity to be 9.8m/s2, The velocity is 24.5m/s2.
Taking gravity to be 10m/s2, The velocity is 25m/s2.
Explanation:
According the first formula of motion under the influence of gravity for upward motion, v=u-gt, where v=final velocity, u=initial velocity, and t= time taken.
Here the time taken for the ball to reach the maximum point is half of 5, which is 2.5 seconds.
And v is 0, since at the maximum point gravity slows down the velocity to 0.
Finding the initial velocity,
v=u-gt
0=u-10(2.5)
u=10(2.5)
u=25m/s