Answer: hello some of your values are wrongly written hence I will resolve your question using the right values
answer:
stiffness = 1.09 * 10^-6 N/m
Explanation:
Given data:
Length ( l ) = 16 m
radius of wire ( r ) = 3.5 m
mass ( m ) = 5kg
<u>Distance stretched ( Δl ) = 4 * 10^-3 m </u> ( right value )
<u>average bond length ( between atoms ) = 2.3 * 10^-10 m </u>( right value)
first step : calculate the area
area ( A ) = πr^2 = π * ( 3.5)^2 = 38.48 m^2
γ = MgL / A Δl
= [ (5 * 9.81 * 16 ) / ( 38.48 * (4.3*10^-3) ) ]
= 784.8 / 0.165 = 4756.36 N/m^2
hence : stiffness = γ * bond length
= 4756.36 * 2.3 * 10^-10 = 1.09 * 10^-6 N/m
Answer:

Explanation:
As per energy conservation we can say that energy stored in the spring at the position of maximum compression must be equal to the kinetic energy of bullet and block system
so here we have

here we know that
k = 205 N/m
x = 35 cm

now by momentum conservation we know that


now plug in all values in it

now from above equation


by solving above equation we have

Answer:
b 1.39 m/s²
Explanation:
Given the following data;
Time = 12 seconds
Distance, S = 100 m
Since it's starting from rest, the initial velocity is equal to 0m/s.
To find the acceleration, we would use the second equation of motion;

Where;
S represents the displacement or height measured in meters.
u represents the initial velocity measured in meters per seconds.
t represents the time measured in seconds.
a represents acceleration measured in meters per seconds square.
Substituting into the equation, we have;
100 = 0(12) + ½*a*12²
100 = 0 + 72
100 = 72a
Acceleration, a = 100/72
Acceleration, a = 1.389 ≈ 1.39 m/s²
Answer:
198.9 x 10^-16
Explanation:
E = hc/ wavelength
E =(6.63 x 10^-34 x 3 x 10^8)/(0.01 x 10^-9)
E = 198.9 x 10^-16