1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
3 years ago
8

A rubber band has potential energy of 5 J. If the spring constant of the rubber band is 50 N/m, what is the displacement of the

rubber band?
Physics
2 answers:
Valentin [98]3 years ago
7 0
To determine the displacement, since we are given the potential energy, we use the equation for potential energy. For a spring, it is one-half the product of the spring constant and the square of the displacement. We do as follows:

PE = kx^2/2
5 Nm = 50N/m (x^2)
x = 0.32 m

Therefore, the displacement would be 0.32 m.
Allisa [31]3 years ago
7 0
The correct answer is 0.4 m on Edge.
You might be interested in
A woman can row her canoe at 2.5 m/s. If she faces an opposing current of 3.0 m/s, how fast will she go forward?
taurus [48]

Answer:

V = - 0.5 [m/s]

Explanation:

In order to solve this problem, we must use the principle of relative speeds. This is for an observer who is on the edge of the river he can see how the river moves to the left and the woman tries to move to the right but can not since:

V_{total}=-3+2.5\\V_{total}=-0.5 [m/s]

That is, the person sees how the woman moves to the left but with avelocity of 0.5 [m/s] to the left

8 0
2 years ago
A stone is dropped from a bridge and hits the pavement below in two seconds. What is the velocity of the stone when it hits the
Helen [10]
We have: a = v/t
Here, t = 2 s  [ Given ]
a = 9.8 m/s²  [constant value for earth system ]

Substitute their values into the expression:
9.8 = v/2
v = 9.8 × 2
v = 19.6 m/s

In short, Your Answer would be Option B

Hope this helps!
4 0
3 years ago
Read 2 more answers
Is friction used when buttering a cake pan?
Elena L [17]

Answer: friction is used when 2 and 2 things mix and come together but normally friction slows things down but when buttering a pan it doesnt slow down

7 0
3 years ago
Read 2 more answers
A rocket, initially at rest on the ground, accelerates straight upward from rest with constant (net) acceleration 29.4 m/s2 m /
Sidana [21]

Answer:

The maximum height is 2881.2 m.

Explanation:

Given that,

Acceleration = 29.4 m/s²

Time = 7.00 s

We need to calculate the distance

Using equation of motion

s=ut+\dfrac{1}{2}at^2

Put the value into the formula

s=0+\dfrac{1}{2}\times29.4\times7^2

s=720.3\ m

We need to calculate the velocity

Using formula of velocity

v=a\times t

Put the value into the formula

v=29.4\times7

v=205.8\ m/s

We need to calculate the height

Using formula of height

H=\dfrac{v^2}{2g}

Put the value into the formula

H=\dfrac{(205.8)^2}{2\times9.8}

H=2160.9\ m

We need to calculate the maximum height

Using formula for maximum height

H'=H+s

Put the value into the formula

H'=2160.9+720.3

H'=2881.2\ m

Hence, The maximum height is 2881.2 m.

4 0
3 years ago
Continuous and aligned fiber-reinforced composite with cross-sectional area of 340 mm2 (0.53 in.2) is subjected to a longitudina
Alecsey [184]

(a) 23.4

The fiber-to-matrix load ratio is given by

\frac{F_f}{F_m}=\frac{E_f V_f}{E_m V_m}

where

E_f = 131 GPa is the fiber elasticity module

E_m = 2.4 GPa is the matrix elasticity module

V_f=0.3 is the fraction of volume of the fiber

V_m=0.7 is the fraction of volume of the matrix

Substituting,

\frac{F_f}{F_m}=\frac{(131 GPa)(0.3)}{(2.4 GPa)(0.7)}=23.4 (1)

(b) 44,594 N

The longitudinal load is

F = 46500 N

And it is sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

We can rewrite (1) as

F_m = \frac{F_f}{23.4}

And inserting this into (2):

F=F_f + \frac{F_f}{23.4}

Solving the equation, we find the actual load carried by the fiber phase:

F=F_f (1+\frac{1}{23.4})\\F_f = \frac{F}{1+\frac{1}{23.4}}=\frac{46500 N}{1+\frac{1}{23.4}}=44,594 N

(c) 1,906 N

Since we know that the longitudinal load is the sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

Using

F = 46500 N

F_f = 44594 N

We can immediately find the actual load carried by the matrix phase:

F_m = F-F_f = 46,500 N - 44,594 N=1,906 N

(d) 437 MPa

The cross-sectional area of the fiber phase is

A_f = A V_f

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_f=0.3, we have

A_f = (340\cdot 10^{-6} m^2)(0.3)=102\cdot 10^{-6} m^2

And the magnitude of the stress on the fiber phase is

\sigma_f = \frac{F_f}{A_f}=\frac{44594 N}{102\cdot 10^{-6} m^2}=4.37\cdot 10^8 Pa = 437 MPa

(e) 8.0 MPa

The cross-sectional area of the matrix phase is

A_m = A V_m

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_m=0.7, we have

A_m = (340\cdot 10^{-6} m^2)(0.7)=238\cdot 10^{-6} m^2

And the magnitude of the stress on the matrix phase is

\sigma_m = \frac{F_m}{A_m}=\frac{1906 N}{238\cdot 10^{-6} m^2}=8.0\cdot 10^6 Pa = 8.0 MPa

(f) 3.34\cdot 10^{-3}

The longitudinal modulus of elasticity is

E = E_f V_f + E_m V_m = (131 GPa)(0.3)+(2.4 GPa)(0.7)=41.0 Gpa

While the total stress experienced by the composite is

\sigma = \frac{F}{A}=\frac{46500 N}{340\cdot 10^{-6}m^2}=1.37\cdot 10^8 Pa = 0.137 GPa

So, the strain experienced by the composite is

\epsilon=\frac{\sigma}{E}=\frac{0.137 GPa}{41.0 GPa}=3.34\cdot 10^{-3}

3 0
3 years ago
Other questions:
  • Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 22 cm apart. The sound
    8·1 answer
  • Which of the following is an element?
    10·1 answer
  • Do you think that nuclear fusion takes place in the atmospheres of stars? Why or why not?
    7·1 answer
  • Big Bee has a mass of 5 kg and hits a newly cleaned windshield accelerating at a rate of 2 m/s2.
    7·1 answer
  • If your front lawn is 21.0 feet wide and 20.0 feet long, and each square foot of lawn accumulates 1350 new snowflakes every minu
    13·1 answer
  • What happens to the gravitation force between two objects that are 15 m apart, when one of them moves 3 m closer?
    9·1 answer
  • The amount of force needed to keep a 0.5 kg football moving at a constant speed of 8 m/s
    11·1 answer
  • Which example describes a norenewable resource
    12·1 answer
  • The synthesis of a large collection of information that contains well-tested and verified hypothesis, laws and definitions to ex
    11·1 answer
  • Frieda stands on a hill with a slope of 62°. If her mass is 49 kg, what is the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!