Answer:
0.82 mm
Explanation:
The formula for calculation an
bright fringe from the central maxima is given as:

so for the distance of the second-order fringe when wavelength
= 745-nm can be calculated as:

where;
n = 2
= 745-nm
D = 1.0 m
d = 0.54 mm
substituting the parameters in the above equation; we have:

= 0.00276 m
= 2.76 × 10 ⁻³ m
The distance of the second order fringe when the wavelength
= 660-nm is as follows:

= 1.94 × 10 ⁻³ m
So, the distance apart the two fringe can now be calculated as:

= 2.76 × 10 ⁻³ m - 1.94 × 10 ⁻³ m
= 10 ⁻³ (2.76 - 1.94)
= 10 ⁻³ (0.82)
= 0.82 × 10 ⁻³ m
= 0.82 × 10 ⁻³ m 
= 0.82 mm
Thus, the distance apart the second-order fringes for these two wavelengths = 0.82 mm
Answer:
0.80865 Hz
1.23662 seconds
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
l = Length of arm = 0.57 m
Length of simple pendulum is given by

The frequency is given by

The frequency is 0.80865 Hz
The time period is given by

The time period is 1.23662 seconds
Answer:
a= 0.5m/s^2
Explanation:
Force applied on an object is known as
F=m.a (Newton's second law states it)
a=F/m
a=5/10=0.5m/s^2
Answer: Given:
Initial velocity= 36km/h=36x5/18=10m/s
Final velocity =54km/h=54x5/18=15m/s
Time =10sec
Acceleration = v-u/ t
=15-10/10=5/10=1/2=0.5 m/s2
Distance =s=?
From second equation of motion:
S=ut +1/2 at^2
=10*10+1/2*0.5*10*10
=100+25
=125m
So distance travelled 125m
Hope it helps you
Answer:
5308.34 N/C
Explanation:
Given:
Surface density of each plate (σ) = 47.0 nC/m² = 
Separation between the plates (d) = 2.20 cm
We know, from Gauss law for a thin sheet of plate that, the electric field at a point near the sheet of surface density 'σ' is given as:

Now, as the plates are oppositely charged, so the electric field in the region between the plates will be in same direction and thus their magnitudes gets added up. Therefore,

Now, plug in
for 'σ' and
for
and solve for the electric field. This gives,

Therefore, the electric field between the plates has a magnitude of 5308.34 N/C