write an equation to represent the oxidation of an alcohol.
identify the reagents that may be used to oxidize a given alcohol.
identify the specific reagent that is used to oxidize primary alcohols to aldehydes rather than to carboxylic acids.
identify the product formed from the oxidation of a given alcohol with a specified oxidizing agent.
identify the alcohol needed to prepare a given aldehyde, ketone or carboxylic acid by simple oxidation.
write a mechanism for the oxidation of an alcohol using a chromium(VI) reagent.
The reading mentions that pyridinium chlorochromate (PCC) is a milder version of chromic acid that is suitable for converting a primary alcohol into an aldehyde without oxidizing it all the way to a carboxylic acid. This reagent is being replaced in laboratories by Dess‑Martin periodinane (DMP), which has several practical advantages over PCC, such as producing higher yields and requiring less rigorous reaction conditions. DMP is named after Daniel Dess and James Martin, who developed it in 1983.
This page looks at the oxidation of alcohols using acidified sodium or potassium dichromate(VI) solution. This reaction is used to make aldehydes, ketones and carboxylic acids, and as a way of distinguishing between primary, secondary and tertiary alcohols.
Oxidizing the different types of alcohols
The oxidizing agent used in these reactions is normally a solution of sodium or potassium dichromate(VI) acidified with dilute sulfuric acid. If oxidation occurs, the orange solution containing the dichromate(VI) ions is reduced to a green solution containing chromium(III) ions. The electron-half-equation for this reaction is
Cr2O2−7+14H++6e−→2Cr3++7H2O
<span>If a lever has a constant force applied at 90∘ to the lever arm at a fixed distance from the pivot point (point of rotation), the torque on the lever is given by Torque = force (at 90∘ to lever arm) × distance to pivot point
Force should be perpendicular to the lever arm
Therefore; you would do 15N X 2.0 m = 30 Nm or 30Joules</span>
<span>Now consider a low pressure area on a disk as shown below.A parcel of air at point A would move toward the center of the low pressure area. That movement would take it farther away from the center of the disk and therefore it would move to the west. A parcel of air at B would move toward the center of the low pressure area which would also take it closer to the center of the spinning disk where its speed is greater than the surrounding points. It would appear to move to the east. With A moving to the west and B moving to the east the line from A to B is rotating counterclockwise.</span>
A hydrate is a substance where in it contains water and other constituent elements. To know whether if that compound was a hydrate,you should record its mass, then put it in a test tube and heat it with a Bunsen burner. If the compound is a hydrate, the water in the compound will discharge in the form of water vapor. At the next 5-10 minutes, remove it in the test tube and weigh it up again. If the mass is now fewer, that means that there was water existing that has now evaporated, and the compound was a hydrate.
Answer:
Small holes in plants that allow carbon dioxide in and oxygen and water vapor out
Explanation:
Stomata are tiny holes that open and close for the plant to breathe.