we have,
wavelenght=c/f
where c= 3×10^8 m/s
f=6.3×10^12 s^-1
so wavelength=(3×10^8)/(6.3×10^12)
=0.476×10^-4 m
Answer:
a) heat it from 23.0 to 78.3
q = (50.0 g) (55.3 °C) (2.46 J/g·°C) =
b) boil it at 78.3
(39.3 kJ/mol) (50.0 g / 46.0684 g/mol) =
c) sum up the answers from the two calculations above. Be sure to change the J from the first calc into kJ
Explanation:
I believe the answer is C, n = 3, l = 3, m = 3. The magnetic quantum number, or
<span>ml</span>, can only take values that range from <span>−l</span> to <span>+l</span>, as you can see in the table above.
For option C), the angular momentum quantum number of equal to ++2<span>, which means that <span>ml</span> can have a maximum value of </span>+2<span>. Since it is given as having a value of </span>+3**, this set of quantum numbers is not a valid one.
The other three sets are valid and can correctly describe an electron.