Lithium Arsenate - Li3AsO4 (160g/mol). So, it’s 2,13 mol * 160 g/mol = 340,8 g.
Answer:
The mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
Explanation:
We are given that
Aqueous solution that contains 22.9% NaOH by mass means
22.9 g NaOH in 100 g solution.
Mass of NaOH(WB)=22.9 g
Mass of water =100-22.9=77.1
Na=23
O=16
H=1.01
Molar mass of NaOH(MB)=23+16+1.01=40.01
Number of moles =
Using the formula
Number of moles of NaOH

Molar mass of water=16+2(1.01)=18.02g
Number of moles of water

Now, mole fraction of NaOH
=

=0.882
Hence, the mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
The answer for the first question is A. Proton is the subatomic particles which adds most of the mass of an atom as well as the neutron since they have the same mass. Photon, on the other hand, is not one of the subatomic particles.
Answer:
1.4 × 10² mL
Explanation:
There is some info missing. I looked at the question online.
<em>The air in a cylinder with a piston has a volume of 215 mL and a pressure of 625 mmHg. If the pressure inside the cylinder increases to 1.3 atm, what is the final volume, in milliliters, of the cylinder?</em>
Step 1: Given data
- Initial volume (V₁): 215 mL
- Initial pressure (P₁): 625 mmHg
- Final pressure (P₂): 1.3 atm
Step 2: Convert 625 mmHg to atm
We will use the conversion factor 1 atm = 760 mmHg.
625 mmHg × 1 atm/760 mmHg = 0.822 atm
Step 3: Calculate the final volume of the air
Assuming constant temperature and ideal behavior, we can calculate the final volume of the air using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 0.822 atm × 215 mL / 1.3 atm = 1.4 × 10² mL
Answer:
2 atoms of nitrogen are present.