The answer is <span>A. Speed=100 million m/s and frequency = 50 million Hz.</span>
Let's calculate for each choice the wavelength using the equation:
v = f × λ ⇒ λ = v ÷ f<span>
where:
v - the speed,
f - the frequency,
</span>λ - the wavelength.
A:
v = 100 000 000 m/s
f = 50 000 000 Hz = 50 000 000 1/s (Since f = 1/T, so units are Hz = 1/s)
⇒ λ = 100 000 000 ÷ 50 000 000 = 2 m
B:
v = 150 000 000 m/s
f = 1 500 Hz = 1 500 1/s
⇒ λ = 150 000 000 m/s ÷ 1 500 = 100 000 m
B:
v = 300 000 000 m/s
f = 100 Hz = 100 1/s
⇒ λ = 300 000 000 m/s ÷ 100 = 3 000 000 m
According to these calculations, the shortest wavelength is needed for choice A.
Answer: Runofff
Explanation: because it said that it is going down the side of the mountain
Answer:
19.5°
Explanation:
The energy of the mass must be conserved. The energy is given by:
1) 
where m is the mass, v is the velocity and h is the hight of the mass.
Let the height at the lowest point of the be h=0, the energy of the mass will be:
2) 
The energy when the mass comes to a stop will be:
3) 
Setting equations 2 and 3 equal and solving for height h will give:
4) 
The angle ∅ of the string with the vertical with the mass at the highest point will be given by:
5) 
where l is the lenght of the string.
Combining equations 4 and 5 and solving for ∅:
6) 
Answer:
0.088 seconds
0.0880000273785 second
0.08800054757 seconds
Explanation:
In the question it is given each century adds 1 ms to a day due to the slowing rotation of the Earth
In 88 centuries the length of the first day of the year will be
88 × 1 = 88 ms = 0.088 seconds
1 ms = 1 century
1 century = 100 years × 365.25 days
⇒1 ms = 36525 days

Sum of the gain on the first day would be
0.088 + 2.7378×10⁻⁸ = 0.0880000273785 second
Sum of the gain on the second day would be
0.088 + 2.7378×10⁻⁸+2.7378×10⁻⁸ = 0.08800054757 seconds
Together the crust and upper mantle are called the lithosphere