Answer:
q = 2.65 10⁻⁶ C
Explanation:
For this exercise we use Coulomb's law
F =
In this case they indicate that the load is of equal magnitude
q₁ = q₂ = q
the force is attractive because the signs of the charges are opposite
F =
q =
we calculate
q =
q =
Ra 7 10-12
q = 2.65 10⁻⁶ C
The atom must have gained 1 or more electrons or must have lost 1 or more electrons.
Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s
Answer:
a. A uniform disk of radius and mass .
Explanation:
The moment of inertia I of an object depends on a chosen axis and the mass of the object. Given the axis through the point, the inertia will be drawn from the uniform disc having a radius and the mass.
.
Answer:
Infrared
Explanation:
This is the electromagnetic spectrum just above the visible light spectrum with higher energy (and higher frequency). This electromagnetic radiation is responsible for feeling the heat when you place your hand close to the side of a fire. It is also harnessed in night vision where bodies that emit some form of heat are visible due to their emission of IR.