Answer:
The potential difference is 121.069 V
Solution:
As per the question:
Diameter of the cylinder, d = 9.0 cm = 0.09 m
Length of the cylinder, l = 40 cm = 1.4 m
Average Resistivity, 
Current, I = 100 mA = 0.1 A
Now,
To calculate the potential difference between the hands:
Cross- sectional Area of the Cylinder, A = 
Resistivity is given by:



Now, using Ohm's Law:
V = IR

As the amplitude of a sound wave increases the pitch of the ringing would be much higher (like if you were to inhale helium.. just with a phone)
<span>
The purpose of a gasoline car engine is to convert gasoline into motion
so that your car can move. Currently the easiest way to create motion
from gasoline is to burn the gasoline inside an engine.
Therefore, a car engine is an internal combustion engine -- combustion takes place internally.
There is such a thing as an external combustion engine. A steam engine
in old-fashioned trains and steam boats is the best example of an
external combustion engine. The fuel (coal, wood, oil, whatever) in a
steam engine burns outside the engine to create steam, and the steam
creates motion inside the engine. Internal combustion is a lot more
efficient (takes less fuel per mile) than external combustion, plus an
internal combustion engine is a lot smaller than an equivalent external
combustion engine. This explains why we don't see any cars using steam
engines.
To understand the basic idea behind how a reciprocating internal
combustion engine works, it is helpful to have a good mental image of
how "internal combustion" works.
One good example is an old Revolutionary War cannon. You have probably
seen these in movies, where the soldiers load the cannon with gun powder
and a cannon ball and light it. That is internal combustion, but it is
hard to imagine that having anything to do with engines.
A potato cannon uses the basic principle behind any reciprocating
internal combustion engine: If you put a tiny amount of high-energy fuel
(like gasoline) in a small, enclosed space and ignite it, an incredible
amount of energy is released in the form of expanding gas. You can use
that energy to propel a potato 500 feet. In this case, the energy is
translated into potato motion. You can also use it for more interesting
purposes. For example, if you can create a cycle that allows you to set
off explosions like this hundreds of times per minute, and if you can
harness that energy in a useful way, what you have is the core of a car
engine! </span>
Both hits the ground <u>at the same time</u> because they have <u>same vertical acceleration</u>
<u></u>
<h3>What is vertical acceleration?</h3>
A vertical acceleration is typically one for which the direction of the vector is vertically upward, usually aligned with and opposite to the gravity vector. But this is a descriptive term, not a rigorous or technical term. A car may accelerate along a road and that would generally be assumed to be a horizontal.
The vector perpendicular to this direction, as perhaps a suspension motion over a bump, would be described as vertical even if it is not strictly vertical.
Note that acceleration is defined as the rate of change of the velocity vector. But the gravitation vector, ‘g’, generally vertically downward, is often denoted by what acceleration a mass in free fall (absent air resistance) would experience, i.e. the relationship between mass and weight.
Learn more about vertical acceleration
brainly.com/question/19528199
#SPJ4
Answer:
a) variation of the energy is equal to the work of the friction force
b) W = Em_{f} -Em₀
, c) he conservation of mechanical energy
Explanation:
a) In an analysis of this problem we can use the energy law, where at the moment the mechanical energy is started it is totally potential, and at the lowest point it is totally kinetic, we can suppose two possibilities, that the friction is zero and therefore by equalizing the energy we set the velocity at the lowest point.
Another case is if the friction is different from zero and in this case the variation of the energy is equal to the work of the friction force, in value it will be lower than in the calculations.
b) the calluses that he would use are to hinder the worker's friction force and energy
W = Em_{f} -Em₀
N d = ½ m v² - m g (y₂-y₁)
y₂-y₁ = 35 -10 = 25m
c) if there is no friction, the physical principle is the conservation of mechanical energy
If there is friction, the principle is that the non-conservative work is equal to the variation of the energy