Answer:
c. 2 MeV.
Explanation:
The computation of the binding energy is shown below
![= [Zm_p + (A - Z)m_n - N]c^2\\\\=[(1) (1.007825u) + (2 - 1 ) ( 1.008665 u) - 2.014102 u]c^2\\\\= (0.002388u)c^2\\\\= (.002388) (931.5 MeV)\\\\=2.22 MeV](https://tex.z-dn.net/?f=%3D%20%5BZm_p%20%2B%20%28A%20-%20Z%29m_n%20-%20N%5Dc%5E2%5C%5C%5C%5C%3D%5B%281%29%20%281.007825u%29%20%2B%20%282%20-%201%20%29%20%28%201.008665%20u%29%20-%202.014102%20u%5Dc%5E2%5C%5C%5C%5C%3D%20%280.002388u%29c%5E2%5C%5C%5C%5C%3D%20%28.002388%29%20%28931.5%20MeV%29%5C%5C%5C%5C%3D2.22%20MeV)
= 2 MeV
As 1 MeV = (1 u) c^2
hence, the binding energy is 2 MeV
Therefore the correct option is c.
We simply applied the above formula so that the correct binding energy could come
And, the same is to be considered
Water and h20 delivery have been a very meaningful company to the community
Answer and explanation;
-The cause of convention currents in a hot spring is rainwater and melted snow is cool and denser and sinks to the bottom of the hot spring where it is heated by a shallow magma chamber. The heated water expands and is less dense and rises to the top.
Explanation;
-Convention Current is the movement of fluid caused by the differences in temperature. Transference of heat from one part of a fluid to another.
-Lighter (less dense), warm material rises while heavier (more dense) cool material sinks. It is this movement that creates circulation patterns known as convection currents in the atmosphere, in water, and in the mantle of Earth. In the atmosphere, as air warms it rises, allowing cooler air to flow in underneath.
We will have that the diagram will be the following:
Here "F" is the force the shuttle is using to take off, friction is the friction with the air and "W" is the weight of the shuttle.