Answer:
Explanation:
Given
radius of circle=1.4 m
Height of stone above ground=1.5 m
Horizontal distance(R)=10 m
It is given at the time of break stone flies horizontally thus stone to cover a height of 1.5 m in time t before reaching ground

t=0.55 s
Initial horizontal velocity at the time of break is given by u


u=18.07 m/s
Therefore magnitude of centripetal acceleration is given by

Answer:
kftisgkstisirstizurzursrus
The modifications to the car design that would have the greatest effect on increasing the kinetic energy of the car is to increase the mass of the car slightly (option B).
<h3>What is kinetic energy?</h3>
Kinetic energy is the energy possessed by an object because of its motion. The kinetic energy equal (nonrelativistically) to one half the mass of the body times the square of its speed.
According to this question, an engineer is designing a small toy car that will be launched from rest. The engineer wants to maximize the kinetic energy of the car when it is launched by a compressed spring.
However, he can only make one adjustment to the initial conditions of the car. Considering the fact that the mass of an object is directly proportional to the kinetic energy.
This suggests that the modifications to the car design that would have the greatest effect on increasing the kinetic energy of the car is to increase the mass of the car slightly.
Learn more about kinetic energy at: brainly.com/question/12669551
#SPJ1
Answer:
2 x 10^20 N
Explanation:
Me = 5.98 x 10^24 kg
Mm = 7.36 x 10^22 kg
r = 3.82 x 10^5 km = 3.82 x 10^8 m
The gravitational force between earth and moon is
F = G Me x Mm / r^2
F = (6.67 x 10^-11 x 5.98 x 10^24 x 7.36 x 10^22) / (3.82 x 10^8 x 3.82 x 10^8)
F = 2 x 10^20 N