1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
11

The head difference between the inlet and outlet of a 1km long pipe discharging 0.1 m^3/s of water is 0.53 m. If the diameter is

0.6m, what is the friction factor? Is a) 0.01 b) 0.02 c) 0.03 d) 0.04 e) 0.05
Engineering
1 answer:
Reptile [31]3 years ago
7 0

Answer:

The correct option is 'e': f = 0.05.

Explanation:

The head loss as given by Darcy Weisbach Equation is as

h_{l}=\frac{flv^{2}}{2gD}

where

h_{l} is head loss in the pipe

'f' is the friction factor

'l' is the length of pile

'v' is the velocity of flow in pipe

'D' is diameter of pipe

From equation of contuinity we have v=\frac{Q}{A}

Thus using this in darcy's equation we get

h_{l}=\frac{flQ^{2}}{2gDA}

where

'Q' is discharge in the pipe

'A' is area of the pipe A=\frac{\piD^2}{4}

Applying the given values we get

h_{l}=\frac{8flQ^{2}}{\pi ^{2}gD^{5}}

Solving for 'f' we get

f=\frac{0.53\times \pi ^{2}\times 9.81\times 0.6^{5}}{1000\times 0.1^{2}\times 8}\\\\f=0.05

You might be interested in
For a certain gas, Cp = 840.4 J/kg-K; and Cv = 651.5 J/kg-K. How fast will sound travel in this gas if it is at an adiabatic sta
Crank

Answer:

The speed of the sound for the adiabatic gas is 313 m/s

Explanation:

For adiabatic state gas, the speed of the sound c is calculated by the following expression:

c=\sqrt(\gamma*R*T)

Where R is the gas's particular constant defined in terms of Cp and Cv:

R=Cp-Cv

For particular values given:

R=840.4 \frac{J}{Kg-K}- 651.5 \frac{J}{Kg-K}

R=188.9 \frac{J}{Kg-K}

The gamma undimensional constant is also expressed as a function of Cv and Cp:

\gamma=Cp/Cv

\gamma=840.4 \frac{J}{Kg-K} / 651.5 \frac{J}{Kg-K}

\gamma=1.29

And the variable T is the temperature in Kelvin. Thus for the known temperature:

c=\sqrt(1.29*188.9 \frac{J}{Kg-K}*377 K)

c=\sqrt(91867.73 \frac{J}{Kg})

The Jules unit can expressing by:

J=N.m=\frac{Kg.m}{s^2}* m

J=\frac{Kg.m^2}{s^2}

Replacing the new units for the speed of the sound:

c=\sqrt(91867.73 \frac{Kg.m^2}{Kg.s^2})

c=\sqrt(91867.73 \frac{m^2}{s^2})

c=313 m/s

3 0
3 years ago
Read 2 more answers
A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the mot
Thepotemich [5.8K]

78950W the answer

Explanation:

A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor

A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor

5 0
3 years ago
Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the e
a_sh-v [17]

Answer:

Outside temperature =88.03°C

Explanation:

Conductivity of air-soil from standard table

   K=0.60 W/m-k

To find temperature we need to balance energy

Heat generation=Heat dissipation

Now find the value

We know that for sphere

q=\dfrac{2\pi DK}{1-\dfrac{D}{4H}}(T_1-T_2)

Given that q=500 W

so

500=\dfrac{2\pi 2\times .6}{1-\dfrac{2}{4\times 10}}(T_1-25)

By solving that equation we get

T_2=88.03°C

So outside temperature =88.03°C

6 0
4 years ago
Compressed Air In a piston-cylinder device, 10 gr of air is compressed isentropically. The air is initially at 27 °C and 110 kPa
Helen [10]

Answer:

(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ

Explanation:

Solution

Recall that:

A 10 gr of air is compressed isentropically

The initial air is at = 27 °C, 110 kPa

After compression air is at = a450 °C

For air,  R=287 J/kg.K

cv = 716.5 J/kg.K

y = 1.4

Now,

(a) W efind the pressure on [MPa]

Thus,

T₂/T₁ = (p₂/p₁)^r-1/r

=(450 + 273)/27 + 273) =

=(p₂/110) ^0.4/1.4

p₂ becomes  2390.3 kPa

So, p₂ = 2.39 MPa

(b) For the increase in total internal energy, is given below:

ΔU = mCv (T₂ - T₁)

=(10/100) (716.5) (450 -27)

ΔU =3030 J

ΔU =3.03 kJ

(c) The next step is to find the total work needed in kJ

ΔW = mR ( (T₂ - T₁) / k- 1

(10/100) (287) (450 -27)/1.4 -1

ΔW = 3035 J

Hence, the total work required is = 3.035 kJ

4 0
3 years ago
What is one thing a person should do to stay safe when exercising
elixir [45]
Staying hydrated at all times
7 0
3 years ago
Read 2 more answers
Other questions:
  • 1. A pipeline constructed of carbon steel failed after 3 years of operation. On examination it was found that the wall thickness
    13·1 answer
  • Water circulates throughout a house in a hot water heating system. If the water is pumped at a speed of 0.50m/s through a 4.0-cm
    5·1 answer
  • The title block generally contains ________.
    12·1 answer
  • QUESTIONS
    12·1 answer
  • A 0.9% solution of NaCl is considered isotonic to mammalian cells. what molar concentration is this?
    10·1 answer
  • How to Cancel prescription
    12·1 answer
  • Select the correct text in the passage.
    6·2 answers
  • A demand factor of _____ percent applies to a multifamily dwelling with ten units if the optional calculation method is used.
    14·1 answer
  • Wells drilled by a nonprofit called Water for South Sudan use a pump that can provide up to 5,500 gallons of water per day. Use
    10·1 answer
  • Work to be performed can come from the work package level of the work breakdown structure as well as other sources. Which of the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!