1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
3 years ago
10

Please help i am give brainliest i really need help guys no links please ???

Engineering
1 answer:
devlian [24]3 years ago
4 0

Explanation:

The wind is an actual form of solar energy. winds are caused by the heating of the atmosphere by the sun, the rotation of the earth, and the earth's surface irregularities. The wind is capture in a wind turbine which provides a renewable energy source, the wind makes the rotor spin, as the rotor spins the movement of the blades drives a generator that creates energy, also known as wind power. The average wind efficiency of turbines is between 35-45%.

Advantages of wind power

- Wind power is cost-effective

- wind creates jobs

- wind enables US industry growth and US competitiveness

-it's a clean fuel source

   

You might be interested in
The 15-kg block A slides on the surface for which µk = 0.3. The block has a velocity v = 10 m/s when it is s = 4 m from the 10-k
sammy [17]

Answer:

s_max = 0.8394m

Explanation:

From equilibrium of block, N = W = mg

Frictional force = μ_k•N = μ_k•mg

Since μ_k = 0.3,then F = 0.3mg

To determine the velocity of Block A just before collision, let's apply the principle of work and energy;

T1 + ΣU_1-2 = T2

So, (1/2)m_a•(v_ao)² - F•s =(1/2)m_a•(v_a1)²

Plugging in the relevant values to get ;

(1/2)•(15)•(10)² - (0.3•15•9.81•4) =(1/2)(15)•(v_a1)²

750 - 176.58 = 7.5(v_a1)²

v_a1 = 8.744 m/s

Using law of conservation of momentum;

Σ(m1v1) = Σ(m2v2)

Thus,

m_a•v_a1 + m_b•v_b1 = m_a•v_a2 + m_b•v_b2

Thus;

15(8.744) + 10(0) = 15(v_a2) + 10(v_b2)

Divide through by 5;

3(8.744) + 2(0) = 3(v_a2) + 2(v_b2)

Thus,

3(v_a2) + 2(v_b2) = 26.232 - - - (eq1)

Coefficient of restitution has a formula;

e = (v_b2 - v_a2)/(v_a1 - v_b1)

From the question, e = 0.6.

Thus;

0.6 = (v_b2 - v_a2)/(8.744 - 0)

0.6 x 8.744 = (v_b2 - v_a2)

(v_b2 - v_a2) = 5.246 - - - (eq2)

Solving eq(1) and 2 simultaneously, we have;

v_b2 = 8.394 m/s

v_a2 = 3.148 m/s

Now, to find maximum compression, let's apply conservation of energy on block B;

T1 + V1 = T2 + V2

Thus,

(1/2)m_b•(v_b2)² + (1/2)k(s_1)² = (1/2)m_b•(v_b'2)² + (1/2)k(s_max)²

(1/2)10•(8.394)² + (1/2)1000(0)² = (1/2)10•(0)² + (1/2)(1000)(s_max)²

500(s_max)² = 352.29618

(s_max)² = 352.29618/500

(s_max)² = 0.7046

s_max = 0.8394m

8 0
3 years ago
The gas expanding in the combustion space of a reciprocating engine has an initial pressure of 5 MPa and an initial temperature
Anit [1.1K]

Answer:

a). Work transfer = 527.2 kJ

b). Heat Transfer = 197.7 kJ

Explanation:

Given:

P_{1} = 5 Mpa

T_{1} = 1623°C

                       = 1896 K

V_{1} = 0.05 m^{3}

Also given \frac{V_{2}}{V_{1}} = 20

Therefore, V_{2} = 1  m^{3}

R = 0.27 kJ / kg-K

C_{V} = 0.8 kJ / kg-K

Also given : P_{1}V_{1}^{1.25}=C

   Therefore, P_{1}V_{1}^{1.25} = P_{2}V_{2}^{1.25}

                     5\times 0.05^{1.25}=P_{2}\times 1^{1.25}

                     P_{2} = 0.1182 MPa

a). Work transfer, δW = \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

                                  \left [\frac{5\times 0.05-0.1182\times 1}{1.25-1}  \right ]\times 10^{6}

                              = 527200 J

                             = 527.200 kJ

b). From 1st law of thermodynamics,

Heat transfer, δQ = ΔU+δW

   = \frac{mR(T_{2}-T_{1})}{\gamma -1}+ \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

  =\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W

  =\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200

  = 197.7 kJ

6 0
3 years ago
Which of the following is the last step in creating a budget?
Greeley [361]

Answer:

<em>D. Determine saving or debt</em>

Explanation:

7 0
3 years ago
A well-insulated rigid vessel contains 3 kg of saturated liquid water at 40oC. The vessel also contains an electrical resistor t
user100 [1]

Answer:

The final temperature is 111.66°C

Explanation:

The given conditions :-

i) Well insulated means no heat loss.

ii) Rigid vessels means volume remains same.

iii) Initial temperature ( T₁ ) = 40°C. = 273 + 40 = 313 K

iv ) Mass of water in vessel = 3 kg.

v) current drawn by resistor ( i ) = 10 ampere.

vi) Voltage applied ( V ) = 50 volts.

vii) The time for which resistor operating ( t ) = 30 minute = 30 * 60 = 1800 seconds.

Now we have to calculate heat developed by resistor in vessel.

Q = V * i * t  = 50 * 10 * 1800 = 900,000 J = 900 KJ.

Since it is a rigid container so the work done is zero.

Q = du    ( du - change in internal energy)

Q = m * C * dT      ( C = 4.186 KJ/KgK )

Q = 3 * 4.186 * (T₂ - T₁ )

900 = 12.558 * ( T₂ - 313 )

T₂ - 313 = 71.6674

T₂ = 384.6674 K

T = 384.6674 - 273 = 111.66°C

So the final temperature is 111.66°C.

3 0
3 years ago
5. The water in an 8-m-diameter, 3-m-high above-ground swimming pool is to be emptied by unplugging a 3-cm-diameter, 25-m-long h
frosja888 [35]

Answer:

The maximum discharge rate of water through the pipe is 0.00545 m³/s or 5.45 L/s.

Friction head and pressure head will cause the actual flow rate to be less.

Explanation:

Considering point 1 at the free surface of the pool, and point 2 at the exit of

pipe.

Using Bernoulli equation between

these two points simplifies to

P1/(p*g) + V1²/2g + z1 = P2/(p*g) + V2²/2g + z2

Let the reference level at the pipe exit (z2 = 0). Noting that the fluid at both points is open to the atmosphere (and thus P1 = P2 = Patm) and that the fluid velocity at the free surface is very low (V1 ≅ 0),

P/(p*g) + z1 = P/(p*g) + V2²/2g

z1 = V2²/2g

Note; z1 = h

V2max = √2gh

h = 3 m

V2max = √2 * 9.81 * 3

V2max = √58.86 = 7.67 m/s

maximum discharge rate of water through the pipe Qmax = Area A * Velocity of discharge V2max

Qmax = A * V2max

Diameter d = 3 cm = 0.03 m

A = Πd²/4 = (Π * 0.03²)/4 = 0.00071m³

Qmax = 0.00071 * 7.67 = 0.00545 m³/s

Qmax = 5.45 L/s

The maximum discharge rate of water through the pipe is 0.00545 m³/s or 5.45 L/s.

Actual flow rate will be less because of heads such as friction head and pressure head.

7 0
3 years ago
Other questions:
  • A cylindrical specimen of brass that has a diameter of 20 mm, a tensile modulus of 110 GPa, and a Poisson’s ratio of 0.35 is pul
    13·1 answer
  • True or false? Engineering degree programs and engineering technology degree programs have a different requirements
    9·1 answer
  • A) A cross-section of a solid circular rod is subject to a torque of T = 3.5 kNâ‹…m. If the diameter of the rod is D = 5 cm, wha
    10·1 answer
  • What kind of volcano usually forms over a hot spot?
    15·2 answers
  • a triangle is defined by the three vertices. write the following functions of the triangle class assume that the point class has
    7·1 answer
  • Consider a potato being baked in an oven that is maintained at a constant temperature. the temperature of the potato is observed
    14·1 answer
  • I’m doing a project on renewable energy. There are 6 energy sources. Solar, wind, geothermal, hydroelectric, tidal, and biomass.
    14·2 answers
  • (35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
    13·1 answer
  • Describe how you would control employee exposure to excessive noise in a mining environment
    14·1 answer
  • This test should be performed on all cord sets, receptacles that aren't part of a building or structure's permanent wiring, and
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!