1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
7

Which of the following answers regarding Mealy and Moore Machines are true?

Engineering
1 answer:
Rom4ik [11]3 years ago
5 0

Answer:

suck bro ☺️☺️ lol

You might be interested in
Using the characteristics equation, determine the dynamic behavior of a PI controller with τI = 4 applied to a second order proc
Sladkaya [172]

Answer:

The values of Kc that render this closed-loop process unstable are in the interval

(Kc < 0)

Explanation:

The transfer function of a PI controller is given as

Gc = Kc {1 + (1/sτI)}

τI = 4

Gc = Kc {1 + (1/4s)}

Gc = Kc {(4s+1)/(4s)}

Divide numerator and denominator by 4

Gc = Kc {(s+0.25)/(s)}

For a second order process, the general transfer function is given by

Gp = Kp {1/(τn²s² + 2ζτns + 1)}

Kp = 2, τn = 5 and ζ = 1.5

Gp = 2/(25s² + 15s + 1)

Divide numerator and denominator by 25

Gp = 0.08/(s² + 0.6s + 0.04)

Ga = 1

Gs = 1

We need to find the value(s) of Kc that makes the closed loop transfer function unstable. Gp*Ga*Gc*Gs + 1 = 0

The closed loop transfer function is unstable when the solution(s) of the characteristic equation obtained is positive.

Gp*Ga*Gc*Gs + 1 = 0

Becomes

[0.08/(s² + 0.6s + 0.04)] × [Kc (s+0.25)/(s)] + 1 = 0

[0.08Kc (s + 0.25)/(s³ + 0.6s² + 0.04s)] = - 1

0.08Kc (s + 0.25) = -s³ - 0.6s² - 0.04s

0.08Kc s + 0.02Kc = -s³ - 0.6s² - 0.04s

s³ + 0.6s² + 0.04s + 0.08Kc s + 0.02Kc = 0

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

We will use the direct substitution method to evaluate the values of Kc that matter. The values of Kc at the turning points of the closed loop transfer function.

For the substitution,

We put s = jw into the equation. (frequency analysis)

Note that j = √(-1)

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

(jw)³ + 0.6(jw)² + (0.08Kc + 0.04)(jw) + 0.02Kc = 0

-jw³ - 0.6w² + (0.08Kc + 0.04)(jw) + 0.02Kc = 0

we then collect terms with j and terms without.

(0.08Kcw + 0.04w - w³)j + (0.02Kc - 0.6w²) = 0

Meaning,

0.08Kcw + 0.04w - w³ = 0 (eqn 1)

0.02Kc - 0.6w² = 0 (eqn 2)

0.02 Kc = 0.6 w²

Kc = 15w²

Substituting this into eqn 1

0.08Kcw + 0.04w - w³ = 0

Kc = 15w²

0.08(15w²)w + 0.04w - w³ = 0

1.2w³ + 0.04w - w³ = 0

0.2w³ + 0.04w = 0

w = 0 or 0.2w² + 0.04 = 0

0.2w² = -0.04

w² = -0.2

w = ± √(-0.2)

w = ± 0.4472j or w = 0

Recall, Kc = 15w² = 15(-0.2) = -3 or Kc = 0

The turning points for the curve of the closed loop transfer function occur when

Kc = 0 or Kc = -3

To investigate, we pick values around these turning points to investigate the behaviour of the closed loop transfer function at those points.

Kc < -3, Kc = -3, (-3 < Kc < 0), Kc = 0 and Kc > 0

Note that, one positive characteristic root or pole is enough to make the system unstable.

We pick a value for Kc in that interval and evaluate the closed loop transfer function.

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

- First of, let Kc = - 4 (Kc < -3)

s³ + 0.6s² - 0.28s - 0.08 = 0

Solving the polynomial

s = (-0.22002), 0.44223, (-0.82221)

One positive pole means the closed loop transfer function is unstable in this region

Let Kc = -3

s³ + 0.6s² - 0.20s - 0.06 = 0

s = 0.37183, (-0.21251) or (-0.75933)

One positive pole still means that the closed loop transfer function is still unstable.

Then the next interval

Let Kc = -1

s³ + 0.6s² - 0.04s - 0.02 = 0

Solving this polynomial,

s = 0.18686, (-0.1749) or (-0.61196)

The function is unstable in the region being investigated.

Let Kc = 0

s³ + 0.6s² + 0.04s = 0

s = 0, -0.0769, -0.5236

One zero, all negative roots, indicate that the closed loop transfer function is marginally stable at this point.

Let Kc = 1, Kc > 0

s³ + 0.6s² + 0.12s + 0.02 = 0

s = (-0.42894), (-0.08553 + 0.1983j) or (-0.08553 - 0.1983j)

All the real negative parts of the poles are all negative, this indicates stability.

Hence, after examining the turning points of the closed loop transfer function, it is evident that, the region's of Kc where the closed loop transfer function is unstable is (Kc < 0)

Hope this Helps!!!

8 0
3 years ago
Use the predicate specifications(x, y): x beats yF (x): x is an (American) football teamQ(x, y): x is quarterback of yL(x,y): x
attashe74 [19]

Answer:

a) ∀y∃x(Q(x, y))

b) (B(Jayhawks, W ildcats)→¬∀y(L(Jayhawks, y)))

c) ∃x(B(Wildcats, x) ∧ B(x, Jayhawks))

Explanation:

a) The statement can be rewritten as "For all football teams, there exists a quarterback" which is written in logical symbols.

b) The statement is an implication and thus have a premise and a conclusion. The premise states "Jayhawks beat the Wildcats" which is translated using B(x, y). The conclusion can be rewritten as "It is not the case that Jayhawks lose to all football teams".

c) The statement is a simple conjunction which can be written as "There exists a team x such that the Wildcats beats x and x beats Jayhawks"

7 0
3 years ago
The hot-wire anemometer is an instrument used for measuring velocities or temperatures. If, during its calibration, the output s
Alexus [3.1K]

Answer:

Explanation:

An expression was assumed for E(V) = av^2 + bv + c

each values for substituted for corresponding values of the velocity and a three unknown equation was formed, which was solved simultaneously to get the three unknowns (a, b and c).

The unknowns was substiutted back ito the original equation.

6 0
4 years ago
An equal-tangent vertical curve is to be constructed between grades of -2% (initial) and 1% (final). The PVI is at station 110 0
Mila [183]

Answer:

The curve length (<em>L</em>) will be = 1218 ft

The elevations and stations for PVC and PVI

a. station of PVC = 103 + 91.00

b. station of PVI = 116 + 09.00

c. elevation of PVC = 432.18ft

d. elevation of PVI = 426.09ft

Explanation:

First calculate for the length (<em>L</em>)

To calculate the length, use the formula of "elevation at any point".

where, elevation at any point = 424.5.

and ∴ PVC Elevation = (420 + 0.01L)

Then, calculate for Station of PVC and PVI and elevation of PVC and PVI

4 0
3 years ago
An air conditioner is designed to bring 10,000 ft3/min of outside air (90°F, 29.8 inches Hg, 88% relative humidity) to 40°F, the
jarptica [38.1K]

Answer:

rate of condensation= 1.81 gal/min

volumetric flow rate= 9223 ft³/min

Explanation:

See attached pictures.

3 0
3 years ago
Other questions:
  • Which BEST identifies a contrast in these two passages? A) The actions taken by the bird in the poem cause injuries, but the act
    5·1 answer
  • Air enters a compressor operating at steady state with pressure of 90 kPa, at a temperature of 350 K, and a volumetric flow rate
    13·1 answer
  • Who plays a role in the financial activities of a company?
    10·1 answer
  • Question 7 options: A steel tape that has a length of 100.00 at 68 degrees F is to be used to lay off a building with the dimens
    6·1 answer
  • Two technicians are discussing how to loosen bleeder valves. Technician A says that a shock is usually necessary to break the ta
    8·1 answer
  • What is the first step to cutting internal threads on an engine lathe?
    9·1 answer
  • Two kilograms of air in a piston-cylinder assembly undergoes an isothermal
    11·1 answer
  • What are examples of Quality Assurance workplaces? Check all that apply.
    12·2 answers
  • How can you throw a ball as hard as you can and have it come back to you, even if it doesn't
    15·1 answer
  • I will Brainliest
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!