1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
9

Technician A says that the most commonly used combustion chamber types include hemispherical, and wedge. Technician B says that

coolant and lubricating openings and passages are located throughout most cylinder heads. Which technician is correct
Engineering
1 answer:
Inessa05 [86]3 years ago
6 0

Answer:

Technician A and Technician B both are correct.

Explanation:

Technician A accurately notes that perhaps the forms of combustion process most widely used are hemispherical and cross.

Technician B also correctly notes that in several cylinder heads, cooling system and greases gaps and pathways are found.

You might be interested in
Air at a pressure of 6000 N/m^2 and a temperature of 300C flows with a velocity of 10 m/sec over a flat plate of length 0.5 m. E
White raven [17]

Answer:

Q=hA(T_{w}-T_{inf})=16.97*0.5(27-300)=-2316.4J

Explanation:

To solve this problem we use the expression for the temperature film

T_{f}=\frac{T_{\inf}+T_{w}}{2}=\frac{300+27}{2}=163.5

Then, we have to compute the Reynolds number

Re=\frac{uL}{v}=\frac{10\frac{m}{s}*0.5m}{16.96*10^{-6}\rfac{m^{2}}{s}}=2.94*10^{5}

Re<5*10^{5}, hence, this case if about a laminar flow.

Then, we compute the Nusselt number

Nu_{x}=0.332(Re)^{\frac{1}{2}}(Pr)^{\frac{1}{3}}=0.332(2.94*10^{5})^{\frac{1}{2}}(0.699)^{\frac{1}{3}}=159.77

but we also now that

Nu_{x}=\frac{h_{x}L}{k}\\h_{x}=\frac{Nu_{x}k}{L}=\frac{159.77*26.56*10^{-3}}{0.5}=8.48\\

but the average heat transfer coefficient is h=2hx

h=2(8.48)=16.97W/m^{2}K

Finally we have that the heat transfer is

Q=hA(T_{w}-T_{inf})=16.97*0.5(27-300)=-2316.4J

In this solution we took values for water properties of

v=16.96*10^{-6}m^{2}s

Pr=0.699

k=26.56*10^{-3}W/mK

A=1*0.5m^{2}

I hope this is useful for you

regards

8 0
3 years ago
What is the value of the work interaction in this process?
Cloud [144]

Answer:

The answer is "-121\  \frac{KJ}{Kg}".

Explanation:

Please find the correct question in the attachment file.

using formula:

\to W=-P_1V_1+P_2V_2 \\\\When \\\\\to W= \frac{P_1V_1-P_2V_2}{n-1}\ \   or \ \  \frac{RT_1 -RT_2}{n-1}\\\\

W =\frac{R(T_1 -T_2)}{n-1}\\\\

    =\frac{0.287(25 -237)}{1.5-1}\\\\=\frac{0.287(-212)}{0.5}\\\\=\frac{-60.844}{0.5}\\\\=-121.688 \frac{KJ}{Kg}\\\\=-121 \frac{KJ}{Kg}\\\\

7 0
3 years ago
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
3 years ago
Refrigerant-134a enters a 28-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5 m/s. The refrigerant gains heat
Alexandra [31]

Answer:

V = 0.30787 m³/s

m = 2.6963 kg/s

v2 =  0.3705 m³/s

v2 = 6.017 m/s

Explanation:

given data

diameter = 28 cm

steadily =200 kPa

temperature = 20°C

velocity = 5 m/s

solution

we know mass flow rate is

m = ρ A v

floe rate V = Av

m = ρ V

flow rate = V = \frac{m}{\rho}

V = Av = \frac{\pi}{4} * d^2 * v1

V = \frac{\pi}{4} * 0.28^2 * 5

V = 0.30787 m³/s

and

mass flow rate of the refrigerant is

m = ρ A v

m = ρ V

m = \frac{V}{v} = \frac{0.30787}{0.11418}

m = 2.6963 kg/s

and

velocity and volume flow rate at exit

velocity = mass × v

v2 = 2.6963 × 0.13741 = 0.3705 m³/s

and

v2 = A2×v2

v2 = \frac{v2}{A2}

v2 = \frac{0.3705}{\frac{\pi}{4} * 0.28^2}

v2 = 6.017 m/s

7 0
3 years ago
Steam enters a steady-flow adiabatic nozzle with a low inlet velocity (assume ~0 m/s) as a saturated vapor at 6 MPa and expands
Sergio [31]
Yea bro I don’t really know
7 0
2 years ago
Other questions:
  • Work-producing devices that operate on reversible processes deliver the most work, and work-consuming devices that operate on re
    6·1 answer
  • A vehicle experiences hard shifting. Technician A says that the bell housing may be misaligned. Technician B says that incorrect
    5·1 answer
  • 3. (9 points) A square-thread power screw is used to raise or lower the basketball board in a gym, the weight of which is W = 10
    12·1 answer
  • In the 5 Code of Federal Regulations (C.F.R.), it is recommended that an individual has security awareness training before s/he
    8·2 answers
  • Saturated liquid water at 150 F is put under pressure to decrease the volume by 1% while keeping the temperature constant. To wh
    8·1 answer
  • The electron beam in a TV picture tube carries 1015 electrons per second. As a design engineer, determine the voltage needed to
    8·1 answer
  • How would you expect an increase in the austenite grain size to affect the hardenability of a steel alloy? Why?
    13·1 answer
  • If a front gear had 24 teeth, and a rear gear has 12 teeth:
    12·1 answer
  • Overconfidence in more male drivers, particularly those under 25 years old, results in them being involved in crashes.
    14·1 answer
  • Technician a s ays a shorted circuit can generate excessive heat. technician b says a shorted circuit will cause the circuit pro
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!