By v = u - at
<span>=>8 = 12 - a x 0.25 </span>
<span>=>a = 4/0.25 km/hr/sec </span>
<span>=>a = 16km/hr/sec
I hope this helped!</span>
For rotational equilibrium of the door we can say that torque due to weight of the door must be counter balanced by the torque of external force

here weight will act at mid point of door so its distance is half of the total distance where force is applied
here we know that

now we will have


so our applied force is 72.5 N
The directions of the vectors for velocity and acceleration are in the opposite directions.
- The velocity vector is always in the direction of motion of the object. So, the direction of velocity is in the right from our point of view.
- When there is a positive acceleration in the object the acceleration vector is in the direction of motion of the object. When there is a negative acceleration in the object the acceleration vector is in the opposite direction of motion of the object. So, the direction of velocity is in the left from our point of view.
Velocity vector is the rate of change of position of an object. Acceleration vector is the rate of change of velocity of an object.
Therefore, the directions of the vectors for velocity and acceleration are in the opposite directions.
To know more about velocity and acceleration vectors
brainly.com/question/13492374
#SPJ4
Answer:
a)Distance traveled during the first second = 4.905 m.
b)Final velocity at which the object hits the ground = 38.36 m/s
c)Distance traveled during the last second of motion before hitting the ground = 33.45 m
Explanation:
a) We have equation of motion
S = ut + 0.5at²
Here u = 0, and a = g
S = 0.5gt²
Distance traveled during the first second ( t =1 )
S = 0.5 x 9.81 x 1² = 4.905 m
Distance traveled during the first second = 4.905 m.
b) We have equation of motion
v² = u² + 2as
Here u = 0, s= 75 m and a = g
v² = 0² + 2 x g x 75 = 150 x 9.81
v = 38.36 m/s
Final velocity at which the object hits the ground = 38.36 m/s
c) We have S = 0.5gt²
75 = 0.5 x 9.81 x t²
t = 3.91 s
We need to find distance traveled last second
That is
S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m
Distance traveled during the last second of motion before hitting the ground = 33.45 m
Vectors are used to represent physical magnitudes that have an associated address. For example, if we want to represent the displacement of an object, it is not enough to describe only the distance as 10 meters, it is also necessary to describe in which direction the displacement occurred, for example, 30 ° towards the northeast.
Therefore the vectors are measured in one or several dimensions that include a magnitude and an address.
The correct option is the last:
"<em>a measurement in more than one dimension that includes a magnitude and a direction</em>"