D. Decreasing its temperature
Explanation:
Decreasing the temperature of the carbon dioxide gas to be dissolved in the carbonated drink will most likely increase the solubility of the gas in the drink.
Temperature has considerable effects on the solubility of gases in liquids.
- Dissolution involves the surrounding of ions by water molecules, in this case, the carbon dioxide gas is to be surrounded by the liquid beverage medium.
- Increasing pressure increases the rate at which gases are soluble. At high pressure, the gases are brought more in contact with the liquid medium.
- Decreasing temperature aids gas solubility.
- If the temperature of gases are increased, they will not want to stay in solution as they gain a high amount of kinetic energy.
- Therefore, it will increase their randomness and the urge to leave the solution.
- Decrease in temperature and increase in pressure makes gas solubility to be fast.
Learn more:
Rate of chemical reactions brainly.com/question/6281756
#learnwithBrainly
It hink that it is the 2nd one
Answer:
Rf5 is 6 and I have an article on common strategies for coping
Explanation:
Abdullah and this is my 55 566 and I have an article on common strategies for coping with the value of polynomial 5x and the video will will certainly not cause any harm to you and the thank god that you can please make a gaming video or 6 with gggtgr and the video will will certainly be the same as the one you sent me last night and I will send you a link to the chief 6 on the
To develop this problem it is necessary to apply the oscillation frequency-related concepts specifically in string or pipe close at both ends or open at both ends.
By definition the oscillation frequency is defined as

Where
v = speed of sound
L = Length of the pipe
n = any integer which represent the number of repetition of the spectrum (n)1,2,3...)(Number of harmonic)
Re-arrange to find L,

The radius between the two frequencies would be 4 to 5,


Therefore the frequencies are in the ratio of natural numbers. That is

Here f represents the fundamental frequency.
Now using the expression to calculate the Length we have

Therefore the length of the pipe is 1.3m
For the second harmonic n=2, then

Therefore the length of the pipe in the second harmonic is 2.6m
<span>6160 joules
to lift 1 newton 1 metre requires 1 joule
there are 10 newtons in one kilo
so 77(kg) x 8 (metres) x 10 (newtons/kilo) = 6160 joules</span>