Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
Answer:
I think C? I'm not sure totally though...
Explanation:
Explanation:
Hey there!!
Let's simply work with it.
Here,
load = 1200N
Effort = 200N
Load distance = 15cm
We have,
According to the principle of lever.
L×LD = E×ED.
1200×15 = 200× ED.
18000 = 200ED.

Therefore, Effort Distance = 90cm.
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Ferromagnetic, paramagnetic, and diamagnetic
c. A current is induced in the coiled wire, which lights the light bulb.
<h3>
</h3><h3>
What is electromagnetic induction?</h3>
If we kept the bar magnet stationary and moved the coil back and forth within the magnetic field an electric current would be induced in the coil.
Then by either moving the wire or changing the magnetic field we can induce a voltage and current within the coil and this process is known as Electromagnetic Induction and is the basic principle of operation of transformers, motors and generators.
When the magnet shown below is moved “towards” the coil, the pointer or needle of the Galvanometer, which is basically a very sensitive center zeroed moving-coil ammeter, will deflect away from its center position in one direction only.
When the magnet stops moving and is held stationary with regards to the coil the needle of the galvanometer returns back to zero as there is no physical movement of the magnetic field.
Therefore ,
If you move a bar magnet back and forth along the axis of the coiled wire shown below then a current is induced in the coiled wire, which lights the light bulb.
Learn more about electromagnetic induction here:
brainly.com/question/26334813
#SPJ1