To solve this problem we will apply the first law of thermodynamics and we will make a balance between the heat transferred, its internal energy and the total work. Recall that for gases the definition of work can be expressed in terms of its pressure and volume. Let's start

Here,
dU = Internal Energy
dW = Work
But internal energy is unchanged, then


Where
= Change in Volume
P = Pressure
Finally, the expression of the heat transferred can be expressed in terms of pressure and volume, so it would end up becoming

Replacing,


Therefore the correct answer is B.
Answer:
It would result an a negatice answer.
Explanation:
The accelarion should be pulled as a kite not a box :) columbus said that musical stuff no just no
Hope this helps!!
- Katty queen
F = 500N
S = 5m
T = 1.2s
----------------------------------
P = ?
We can use formula P = F * V, just because it was a smooth slide we can assume that average speed was V = S/T = 5 / 1.2 = 50/12
So the final answer would be:
P = F * V = 500 * 50/12
Are you sure those are correct numbers? The answer don't look nice :D
Answer:

Explanation:
As we know that backpack is kicked on the rough floor with speed "v"
So here as per force equation in vertical direction we know that

so normal force on the block is given as

now the magnitude of kinetic friction on the block is given as


now when bag is sliding on the floor then net deceleration of the block due to friction is given as


now we know that bag hits the opposite wall at L distance away in time t
so we have



Answer:
The frictional force
6.446 N
The acceleration of the block a = 6.04 
Explanation:
Mass of the block = 3.9 kg
°
= 0.22
(a). The frictional force is given by


3.9 × 9.81 × 
29.3 N
Therefore the frictional force
0.22 × 29.3
6.446 N
(b). Block acceleration is given by

F = 30 N
= 6.446 N
= 30 - 6.446
= 23.554 N
The net force acting on the block is given by

23.554 = 3.9 × a
a = 6.04 
This is the acceleration of the block.