Answer:
Explanation:
A ) Distance between two adjacent anti-node will be equal to distance between two adjacent nodes . So the required distance is 15 cm .
B ) wave-length, amplitude, and speed of the two traveling waves that form this pattern are as follows
wave length = same as wave length of wave pattern formed. so it is 30 cm
amplitude = 1/2 the amplitude of wave pattern formed so it is .850 / 2 = .425 cm
Speed = frequency x wavelength ( frequency = 1 / time period )
= 1 / .075) x 30 cm
400 cm / m
C ) maximum speed
= ω A
= (2π / T) x A
= 2 X 3.14 x .85 / .075 cm / s
= 71.17 cm / s
minimum speed is zero.
D ) The shortest distance along the string between a node and an antinode
= Wavelength / 4
= 30 / 4
= 7.5 cm
I believe the answer is free electrons
Answer: A) Forces of attraction and repulsion exist between gas particles at close range.
Explanation:
The <u>Ideal Gas equation</u> is:
Where:
is the pressure of the gas
is the volume of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin
According to this law, molecules in gaseous state do not exert any force among them (attraction or repulsion) and the volume of these molecules is small, therefore negligible in comparison with the volume of the container that contains them. In this sense, real gases can behave approximately to an ideal gas, under conditions of high temperature and low pressures.
However, at low temperatures or high pressures, real gases deviate significantly from ideal gas behavior. This is because at low temperatures molecules begin to move slower, allowing the repulsive and attractive forces among them to take effect. In fact, <u>the attraction forces are responsible for the condensation of the gas</u>. In addition, at high pressures the volume of molecules cannot be approximated to zero, hence the volume of these molecules is not negligible anymore.
Answer:
The potential difference through which an electron accelerates to produce x rays is
.
Explanation:
It is given that,
Wavelength of the x -rays, 
The energy of the x- rays is given by :

The energy of an electron in terms of potential difference is given by :

So,

V is the potential difference
e is the charge on electron


V = 12431.25 volts
or

So, the potential difference through which an electron accelerates to produce x rays is
. hence, this is the required solution.