Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
Answer:

Explanation:
From the exercise we have that

<em><u>To find how far from the edge of the piano does the cat strike the floor, we need to calculate its time first </u></em>

At the end of the motion y=0m

Solving for t
or 
Since the <u>time</u> can't be negative the answer is t=0.73
Knowing that we can calculate how far does the cat strike the floor

Since the new distance is 3 times the old distance,
the new force is (1/3²) = 1/9th of the old force.
That's kind-of Choice-D, but I really don't like the way choice-D is worded.
"9 times smaller" is really pretty meaningless.
Answer:
Ok I'm not 100% on this one but, try 3 lifes sorry if u get it wrong D:
Explanation:
Answer:
Concave lenses are thinner at the middle. Rays of light that pass through the lens are spread out (they diverge). A concave lens is a diverging lens. When parallel rays of light pass through a concave lens the refracted rays diverge so that they appear to come from one point called the principal focus.