1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
14

Consider that a ray of light is travelling from glass to water. The refractive index of water is 1.30 (i e n . ., 1.30 w = ) and

refractive index of glass is 1.70 (i e n . ., 1.70 g = ). Again, remind yourself that light is incident from glass to water. At the glass-water interface the light suffers total internal reflection (TIR). Find the condition for total internal reflection
Physics
1 answer:
Bess [88]3 years ago
6 0

Answer:

\theta_i=49.88^{\circ}

Explanation:

Total internal reflection can happen when light goes from a medium with higher refractive index (in this case, glass) to a medium with lower refractive index (in this case, water).

Snell's Law tells us that n_isin\theta_i=n_rsin\theta_r, where the <em>i</em> stands for incident (in this case, glass) and the <em>r</em> for refracted (in this case, water). We want to know when \theta_r=90^{\circ}, that is, when n_isin\theta_i=n_r, and this happens when the incident angle is:

\theta_i=arcsin(\frac{n_r}{n_i})

Which for our values means:

\theta_i=arcsin(\frac{1.3}{1.7})=arcsin(0.76470588235)=49.88^{\circ}

You might be interested in
Determine the power that needs to besupplied by the fanifthe desired velocity is 0.05 m3/s and the cross-sectional area is 20 cm
Mariulka [41]

Answer:

A fan with an energy efficiency of 30 % would need 62.5 watts to bring a desired volume flow of 0.05 cubic meters per second through a cross-sectional area of 20 square centimeters.

Explanation:

Complete statement is: <em>Determine the power that needs to besupplied by the fan if the desired velocity is 0.05 cubic meters per second and the cross-sectional area is 20 square centimeters.</em>

From Thermodynamics and Fluid Mechanics we know that fans are devices that work at steady state which accelerate gases (i.e. air) with no changes in pressure. In this case, mechanical rotation energy is transformed into kinetic energy. If we include losses due to mechanical friction, the Principle of Energy Conservation presents the following equation:

\eta\cdot \dot W = \dot K

\dot W = \frac{\dot K}{\eta} (Eq. 1)

Where:

\eta - Efficiency of fan, dimensionless.

\dot W - Electric power supplied fan, measured in watts.

\dot K - Rate of change of kinetic energy of air in time, measured in watts.

From definition of kinetic energy, the equation above is now expanded:

\dot W = \frac{\rho_{a}\cdot \dot V}{2\cdot \eta}\cdot \left(\frac{\dot V}{A_{s}} \right)^{2} (Eq. 2)

Where:

\rho_{a} - Density of air, measured in kilograms per cubic meter.

\dot V - Volume flow, measured in cubic meters per second.

A_{s} - Cross-sectional area of fan, measured in square meters.

If we know that \rho_{a} = 1.20\,\frac{kg}{m^{3}}, \dot V = 0.05\,\frac{m^{3}}{s}, \eta = 0.3 and A_{s} = 20\times 10^{-4}\,m^{2}, the power needed to be supplied by the fan is:

\dot K = \left[\frac{\left(1.20\,\frac{kg}{m^{3}} \right)\cdot \left(0.05\,\frac{m^{3}}{s} \right)}{2\cdot (0.3)} \right]\cdot \left(\frac{0.05\,\frac{m^{3}}{s} }{20\times 10^{-4}\,m^{2}} \right)^{2}

\dot K = 62.5\,W

A fan with an energy efficiency of 30 % would need 62.5 watts to bring a desired volume flow of 0.05 cubic meters per second through a cross-sectional area of 20 square centimeters.

5 0
3 years ago
En el País Vasco los deportistas rurales levantan enormes piedras hasta su hombro. En un concurso , Jose levanta una piedra de 2
Mama L [17]

Answer:

Txomin lifted the stone with greater mass. (Txomin levantó la roca con mayor fuerza).

Explanation:

The sportsman that lifts the stone with a greater mass needs a higher force (El deportista que levanta la piedra con mayor masa necesita una mayor fuerza):

José

F = (200\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)

F = 1961.4\,N

Txomin

F = (220\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)

F = 2157.54\,N

Txomin lifted the stone with greater mass. (Txomin levantó la roca con mayor fuerza).

5 0
2 years ago
If the second harmonic of a certain string is 42 Hz, what is the fundamental frequency of the string?
sdas [7]
Data:
f_{2} = 42 Hz
n (Wave node)
V (Wave belly) 
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>
f_{n} =  \frac{nV}{2L}

Wire 2 → 2º Harmonic → n = 2

f_{n} = \frac{nV}{2L}
f_{2} = \frac{2V}{2L} &#10;
2V =  f_{2} *2L
V =  \frac{ f_{2}*2L }{2}
V =  \frac{42*2L}{2}
V =  \frac{84L}{2}
V = 42L

Wire 1 → 1º Harmonic or Fundamental rope → n = 1


f_{n} = \frac{nV}{2L}
f_{1} = \frac{1V}{2L}
f_{1} =  \frac{V}{2L}

If, We have:
V = 42L
Soon:
f_{1} = \frac{V}{2L}
f_{1} = \frac{42L}{2L}
\boxed{f_{1} = 21 Hz}

Answer:

<span>The fundamental frequency of the string:
</span>21 Hz

7 0
3 years ago
Read 2 more answers
Bryce, a mouse lover, keeps his four pet mice in a roomy cage, where they spend much of their spare time (when they are not slee
user100 [1]

Answer:

I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s ,  I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s ,  I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s  and I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

Explanation:

The impulse is equal to the variation of the moment, to apply this relationship to our case, we will assume that initially the mouse was at rest

    I = Δp = m v_{f} -m v₀

    I = m (v_{f}  -v₀)

Bold indicates vector quantities, let's calculate the momentum of each mouse in for the x and y axes

We recommend bringing all units to the SI system

Mouse 1.

It has a mass of 22.3 g = 22.3 10⁻³ kg, a final velocity of (v = 0.349 i ^ - 0.301 j ^) m / s with an initial velocity of zero

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 22.3 10⁻³ (0.349 -0)

    Iₓ = 7.78 10⁻³ J s

   I_{y} = m (v_{fy}  -v_{oy} )

   I_{y} = 22.3 10⁻³ (-0.301)

   I_{y} = -6.71 10⁻³ J s

   I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s

Mouse 2

Mass 17.9 g = 17.9 10⁻³ kg

Speed ​​(-0.699 i ^ - 0.815 j ^) m / s

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 17.9 10⁻³ (-0.699 -0)

    Iₓ = -12.5 10⁻³ J s

    I_{y} = 17.9 10⁻³ (-0.815 - 0)

    I_{y} = -14.6 10⁻³ J s

   I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s

Mouse 3

Mass 19.1 g = 19.1 10⁻³ kg

Speed ​​(0.745i ^ + 0.975 j ^) m / s

    Iₓ = 19.1 10⁻³ (0.745 -0)

    Iₓ = 14.2 10⁻³ J s

    I_{y} = 19.1 10⁻³(0.975 -0)

    I_{y} = 18.6 10⁻³ J s

    I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s

Mouse 4

Mass 10.1 g = 10.1 10⁻³ kg

Speed ​​(-0.905i ^ + 0.717j ^) m / s

    Iₓ = 10.1 10⁻³ (-0.905 -0)

    Iₓ = -9.14 10⁻³ J s

    I_{y} = 10.1 10⁻³ (0.717 -0)

    I_{y} = 7.24 10⁻³ J s

   I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

8 0
3 years ago
Which of the following statements is true about a current-carrying wire in a magnetic field? A. Reversing the current direction
Zielflug [23.3K]
B. Reversing the current direction will cause the force deflecting the wire to be perpendicular to the magnetic field but in the opposite direction.
6 0
3 years ago
Other questions:
  • An 85,000 kg stunt plane performs a loop-the-loop, flying in a 260-m-diameter vertical circle. at the point where the plane is f
    14·1 answer
  • what is the amplitude and wavelength of the wave shown below? A. Amplitude: 15 cm; wavelength: 150 cm B. Amplitude: 30 cm; wavel
    12·2 answers
  • How is the kelvin scale different from the Celsius scale?
    6·1 answer
  • Please Help!!!
    10·1 answer
  • 8. A car travels at a constant velocity of 70 mph for one hour. By the end of the second hour, the car’s velocity was 60 mph. At
    10·1 answer
  • Look carefully at the diagrams of each wave.
    9·2 answers
  • How is Uranus similar to Jupiter?
    9·2 answers
  • A rock from the top of a hill is falling from rest.
    9·1 answer
  • After a projectile is fired into the air, what is the magnitude of the acceleration
    11·1 answer
  • What does motion mean
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!