Answer:
<u>The correct answer is that the number of different ways that the letters of the word "millennium" can be arranged is 226,800</u>
Step-by-step explanation:
1. Let's review the information provided to us to answer the question correctly:
Number of letters of the word "millennium" = 10
Letters repeated:
m = 2 times
i = 2 times
l = 2 times
n = 2 times
2. The number of different ways that the letters of millennium can be arranged is:
We will use the n! or factorial formula, this way:
10!/2! * 2! * 2! * 2!
(10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)/(2 * 1) * (2 * 1) * (2 * 1) * (2 *1)
3'628,800/2*2*2*2 = 3'628,800/16 = 226,800
<u>The correct answer is that the number of different ways that the letters of the word "millennium" can be arranged is 226,800</u>
Final result : -3
Step by step solution :Step 1 : 3 - a Simplify ————— 21 Equation at the end of step 1 : (a - 3) (3 - a) ——————— ÷ ——————— 7 21 Step 2 : a - 3 Simplify ————— 7 Equation at the end of step 2 : (a - 3) (3 - a) ——————— ÷ ——————— 7 21 Step 3 : a-3 3-a Divide ——— by ——— 7 21
3.1 Dividing fractions
To divide fractions, write the divison as multiplication by the reciprocal of the divisor :
a - 3 3 - a a - 3 21 ————— ÷ ————— = ————— • ——————— 7 21 7 (3 - a)
3.2 Rewrite (3-a) as (-1) • (a-3) Canceling Out : 3.3 Cancel out (a-3) which now appears on both sides of the fraction line.
Final result : -3
I'm not sure what your trying to ask is that the full question
Ok ok
90,000+8,000+700+60+5
ha ha :)
there u go